Chebyshev method to solve the time-dependent Maxwell equations

被引:0
|
作者
De Raedt, H
Michielsen, K
Kole, JS
Figge, MT
机构
[1] Univ Groningen, Inst Theoret Phys, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Ctr Mat Sci, NL-9747 AG Groningen, Netherlands
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a one-step algorithm to solve the time-dependent Maxwell equations for systems with spatially varying permittivity and permeability. We compare the results of this algorithm with those obtained from unconditionally stable algorithms and demonstrate that for a range of applications the one-step algorithm may be orders of magnitude more efficient than multiple time-step, finite-difference time-domain algorithms. We discuss both the virtues and limitations of this one-step approach.
引用
收藏
页码:211 / 215
页数:5
相关论文
共 50 条
  • [1] Unconditionally stable algorithms to solve the time-dependent Maxwell equations
    Kole, JS
    Figge, MT
    De Raedt, H
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 66705/1 - 66705/14
  • [2] Unified framework for numerical methods to solve the time-dependent Maxwell equations
    De Raedt, H
    Kole, JS
    Michielsen, KFL
    Figge, MT
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2003, 156 (01) : 43 - 61
  • [3] New unconditionally stable algorithms to solve the time-dependent Maxwell equations
    Kole, JS
    Figge, MT
    De Raedt, H
    [J]. COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 803 - 812
  • [4] Regularity in time of the time-dependent Maxwell equations
    Assous, F
    Ciarlet, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 719 - 724
  • [5] Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations
    Kole, J.S.
    Figge, M.T.
    De Raedt, H.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (06): : 1 - 066705
  • [6] Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations
    Kole, JS
    Figge, MT
    De Raedt, H
    [J]. PHYSICAL REVIEW E, 2002, 65 (06):
  • [7] A Chebyshev expansion method for solving the time-dependent partial differential equations
    Elbarbary, Elsayed A. E.
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (11): : 1033 - 1044
  • [8] DIRECT INTEGRATION OF TIME-DEPENDENT MAXWELL EQUATIONS
    UNZ, H
    [J]. AMERICAN JOURNAL OF PHYSICS, 1966, 34 (11) : 1015 - &
  • [9] A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations
    Dehghan, Mehdi
    Salehi, Rezvan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 268 : 93 - 110
  • [10] The time-dependent Ginzburg-Landau Maxwell equations
    Tsutsumi, M
    Kasai, H
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (02) : 187 - 216