Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations

被引:6
|
作者
He, Bin [1 ]
Yang, Wei [1 ,2 ]
Wang, Hao [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Hunan, Peoples R China
关键词
AEFEM; Time-harmonic Maxwell's equations; Residual type posteriori error estimator; SINGULARITIES;
D O I
10.1016/j.cam.2020.112860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our main goal is to study the convergence analysis of adaptive edge finite element method (AEFEM) based on arbitrary order Nedelec edge elements for the variable-coefficient time-harmonic Maxwell's equations, i.e., we prove that the AEFEM gives a contraction for the sum of the energy error and the error estimator, between two consecutive adaptive loops provided the initial mesh is fine enough. First, we give the variational problem of the variable-coefficient time-harmonic Maxwell's equations and the posteriori error estimator of the residual type. Then we establish the quasiorthogonality, the global upper bound of the error, the compressibility of the error estimator, and prove the convergence result. Finally, our numerical results verify that the error estimator is valid. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] CONVERGENCE AND OPTIMALITY OF ADAPTIVE EDGE FINITE ELEMENT METHODS FOR TIME-HARMONIC MAXWELL EQUATIONS
    Zhong, Liuqiang
    Chen, Long
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    MATHEMATICS OF COMPUTATION, 2012, 81 (278) : 623 - 642
  • [2] The Weighted Edge Finite Element Method for Time-harmonic Maxwell Equations with Strong Singularity
    Rukavishnikov, Viktor
    Mosolapov, Andrey
    2014 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY (MMET), 2014, : 148 - 151
  • [3] High order edge finite element approximations for the time-harmonic Maxwell's equations
    Bonazzoli, Marcella
    Gaburro, Elena
    Dolean, Victorita
    Rapetti, Francesca
    2014 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2014,
  • [4] Adaptive hp-Finite Element Computations for Time-Harmonic Maxwell's Equations
    Jiang, Xue
    Zhang, Linbo
    Zheng, Weiying
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (02) : 559 - 582
  • [5] Convergence analysis of an adaptive edge element method for Maxwell's equations
    Chen, Junqing
    Xu, Yifeng
    Zou, Jun
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (12) : 2950 - 2969
  • [6] A FINITE-ELEMENT METHOD FOR APPROXIMATING THE TIME-HARMONIC MAXWELL EQUATIONS
    MONK, P
    NUMERISCHE MATHEMATIK, 1992, 63 (02) : 243 - 261
  • [7] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations
    Du, Zhijie
    Duan, Huoyuan
    BIT NUMERICAL MATHEMATICS, 2023, 63 (04)
  • [8] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell’s equations
    Zhijie Du
    Huoyuan Duan
    BIT Numerical Mathematics, 2023, 63
  • [9] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [10] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215