Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations

被引:6
|
作者
He, Bin [1 ]
Yang, Wei [1 ,2 ]
Wang, Hao [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Hunan, Peoples R China
关键词
AEFEM; Time-harmonic Maxwell's equations; Residual type posteriori error estimator; SINGULARITIES;
D O I
10.1016/j.cam.2020.112860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our main goal is to study the convergence analysis of adaptive edge finite element method (AEFEM) based on arbitrary order Nedelec edge elements for the variable-coefficient time-harmonic Maxwell's equations, i.e., we prove that the AEFEM gives a contraction for the sum of the energy error and the error estimator, between two consecutive adaptive loops provided the initial mesh is fine enough. First, we give the variational problem of the variable-coefficient time-harmonic Maxwell's equations and the posteriori error estimator of the residual type. Then we establish the quasiorthogonality, the global upper bound of the error, the compressibility of the error estimator, and prove the convergence result. Finally, our numerical results verify that the error estimator is valid. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Schwarz Preconditioning for High Order Edge Element Discretizations of the Time-Harmonic Maxwell's Equations
    Bonazzoli, Marcella
    Dolean, Victorita
    Pasquetti, Richard
    Rapetti, Francesca
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXIII, 2017, 116 : 117 - 124
  • [22] A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations
    Brenner, Susanne C.
    Li, Fengyan
    Sung, Li-Yeng
    MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 573 - 595
  • [23] Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations
    Bao, G
    Wu, HJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 2121 - 2143
  • [24] An iterative method for time-harmonic integral Maxwell's equations
    Collino, F
    Després, B
    COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 171 - 181
  • [25] A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements
    Tsuji, Paul
    Engquist, Bjorn
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3770 - 3783
  • [26] THE A POSTERIORI ERROR ESTIMATOR OF SDG METHOD FOR VARIABLE COEFFICIENTS TIME-HARMONIC MAXWELL?S EQUATIONS
    Yang, Wei
    Liu, Xin
    He, Bin
    Huang, Yunqing
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (02): : 263 - 286
  • [27] Multilevel solution of the time-harmonic Maxwell's equations based on edge elements
    Beck, R
    Hiptmair, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (07) : 901 - 920
  • [28] Multilevel solution of the time-harmonic Maxwell's equations based on edge elements
    Konrad-Zuse-Zentrum Berlin, Takustraße 7, D-14195 Berlin, Germany
    不详
    不详
    Int J Numer Methods Eng, 7 (901-920):
  • [29] Convergence analysis of ahp-finite element approximation of the time-harmonic Maxwell equations with impedance boundary conditions in domains with an analytic boundary
    Nicaise, Serge
    Tomezyk, Jerome
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1868 - 1903
  • [30] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522