THE A POSTERIORI ERROR ESTIMATOR OF SDG METHOD FOR VARIABLE COEFFICIENTS TIME-HARMONIC MAXWELL?S EQUATIONS

被引:0
|
作者
Yang, Wei [1 ]
Liu, Xin [1 ]
He, Bin [2 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Maxwell?s equations; A posteriori error estimation; Staggered discontinuous Galerkin; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; SINGULARITIES;
D O I
10.4208/jcm.2112-m2020-0330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations. We propose two a posteriori error estima-tors, one is the recovery-type estimator, and the other is the residual-type estimator. We first propose the curl-recovery method for the staggered discontinuous Galerkin method (SDGM), and based on the super-convergence result of the postprocessed solution, an asymptotically exact error estimator is constructed. The residual-type a posteriori error estimator is also proposed, and it's reliability and effectiveness are proved for variable coef-ficients time-harmonic Maxwell's equations. The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.
引用
收藏
页码:263 / 286
页数:24
相关论文
共 50 条
  • [1] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [2] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [3] A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell's equations
    Chung, Eric T.
    Yuen, Man Chun
    Zhong, Liuqiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 : 613 - 631
  • [4] An iterative method for time-harmonic integral Maxwell's equations
    Collino, F
    Després, B
    [J]. COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 171 - 181
  • [5] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522
  • [6] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    [J]. FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [7] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [8] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [9] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Gabriel Wittum
    [J]. Journal of Computational Mathematics, 2009, (05) : 563 - 572
  • [10] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Zhong, Liuqiang
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (05) : 563 - 572