A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell's equations

被引:11
|
作者
Chung, Eric T. [2 ]
Yuen, Man Chun [2 ]
Zhong, Liuqiang [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
A posteriori error analysis; Staggered discontinuous Galerkin; Edge finite element; Time-harmonic Maxwell equations; INTERIOR PENALTY METHOD; CONVERGENCE ANALYSIS; WAVE-PROPAGATION; SINGULARITIES; ALGORITHM;
D O I
10.1016/j.amc.2014.03.134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the first a-posteriori error analysis for the staggered discontinuous Galerkin (SDG) method. Specifically, we consider the approximation of the time-harmonic Maxwell's equations by a SDG method, and prove that our residual based a-posteriori error indicator is both reliable and efficient. We validate the performance of the indicator within an adaptive mesh refinement procedure and show its asymptotic exactness for a range of test problems. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:613 / 631
页数:19
相关论文
共 50 条
  • [1] ERROR ANALYSIS OF TREFFTZ-DISCONTINUOUS GALERKIN METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS
    Hiptmair, Ralf
    Moiola, Andrea
    Perugia, Ilaria
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (281) : 247 - 268
  • [2] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492
  • [3] Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7151 - 7175
  • [4] Solution of the time-harmonic, Maxwell equations using discontinuous Galerkin methods
    Dolean, V.
    Fol, H.
    Lanteri, S.
    Perrussel, R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 435 - 445
  • [5] Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations
    Faermann, B.
    [J]. Numerische Mathematik, 79 (01):
  • [6] Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations
    Birgit Faermann
    [J]. Numerische Mathematik, 1998, 79 : 43 - 76
  • [7] Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations
    Faermann, B
    [J]. NUMERISCHE MATHEMATIK, 1998, 79 (01) : 43 - 76
  • [8] DISCONTINUOUS GALERKIN DISCRETIZATIONS OF OPTIMIZED SCHWARZ METHODS FOR SOLVING THE TIME-HARMONIC MAXWELL'S EQUATIONS
    El Bouajaji, Mohamed
    Dolean, Victorita
    Gander, Martin J.
    Lanteri, Stephane
    Perrussel, Ronan
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 572 - 592
  • [9] Analysis of a mixed discontinuous Galerkin method for the time-harmonic Maxwell equations with minimal smoothness requirements
    Liu, Kaifang
    Gallistl, Dietmar
    Schlottbom, Matthias
    van der Vegt, J. J. W.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 2320 - 2351
  • [10] THE A POSTERIORI ERROR ESTIMATOR OF SDG METHOD FOR VARIABLE COEFFICIENTS TIME-HARMONIC MAXWELL?S EQUATIONS
    Yang, Wei
    Liu, Xin
    He, Bin
    Huang, Yunqing
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (02) : 263 - 286