Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations

被引:6
|
作者
He, Bin [1 ]
Yang, Wei [1 ,2 ]
Wang, Hao [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Hunan, Peoples R China
关键词
AEFEM; Time-harmonic Maxwell's equations; Residual type posteriori error estimator; SINGULARITIES;
D O I
10.1016/j.cam.2020.112860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our main goal is to study the convergence analysis of adaptive edge finite element method (AEFEM) based on arbitrary order Nedelec edge elements for the variable-coefficient time-harmonic Maxwell's equations, i.e., we prove that the AEFEM gives a contraction for the sum of the energy error and the error estimator, between two consecutive adaptive loops provided the initial mesh is fine enough. First, we give the variational problem of the variable-coefficient time-harmonic Maxwell's equations and the posteriori error estimator of the residual type. Then we establish the quasiorthogonality, the global upper bound of the error, the compressibility of the error estimator, and prove the convergence result. Finally, our numerical results verify that the error estimator is valid. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An adaptive edge finite element DtN method for Maxwell's equations in biperiodic structures
    Jiang, Xue
    Li, Peijun
    Lv, Junliang
    Wang, Zhoufeng
    Wu, Haijun
    Zheng, Weiying
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) : 2794 - 2828
  • [32] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [33] Two-level additive preconditioners for edge element discretizations of time-harmonic Maxwell equations
    Zhong, Liuqiang
    Liu, Chunmei
    Shu, Shi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (04) : 432 - 440
  • [34] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [35] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [36] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Gabriel Wittum
    Journal of Computational Mathematics, 2009, (05) : 563 - 572
  • [37] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Zhong, Liuqiang
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (05) : 563 - 572
  • [38] Superconvergence Analysis of High-Order Rectangular Edge Elements for Time-Harmonic Maxwell's Equations
    Sun, Ming
    Li, Jichun
    Wang, Peizhen
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 510 - 535
  • [39] Superconvergence Analysis of High-Order Rectangular Edge Elements for Time-Harmonic Maxwell’s Equations
    Ming Sun
    Jichun Li
    Peizhen Wang
    Zhimin Zhang
    Journal of Scientific Computing, 2018, 75 : 510 - 535
  • [40] Block Preconditioning Strategies for High Order Finite Element Discretization of the Time-Harmonic Maxwell Equations
    Bollhoefer, Matthias
    Lanteri, Stephane
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2010), 2012, 16 : 25 - 33