Block Preconditioning Strategies for High Order Finite Element Discretization of the Time-Harmonic Maxwell Equations

被引:0
|
作者
Bollhoefer, Matthias [1 ]
Lanteri, Stephane [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Math, D-38106 Braunschweig, Germany
[2] INRIA Sophia Antipolis, Mediterranee Res Ctr, NACHOS Project Team, F-06902 Sophia Antipolis, France
关键词
DISCONTINUOUS GALERKIN METHODS; HELMHOLTZ-EQUATION;
D O I
10.1007/978-3-642-22453-9_3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study block preconditioning strategies for the solution of large sparse complex coefficients linear systems resulting from the discretization of the time-harmonic Maxwell equations by a high order discontinuous finite element method formulated on unstructured simplicial meshes. The proposed strategies are based on principles from incomplete factorization methods. Moreover, a complex shift is applied to the diagonal entries of the underlying matrices, a technique that has recently been exploited successfully in similar contexts and in particular for the multigrid solution of the scalar Helmholtz equation. Numerical results are presented for 2D and 3D electromagnetic wave propagation problems in homogeneous and heterogeneous media.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 50 条
  • [1] Schwarz Preconditioning for High Order Edge Element Discretizations of the Time-Harmonic Maxwell's Equations
    Bonazzoli, Marcella
    Dolean, Victorita
    Pasquetti, Richard
    Rapetti, Francesca
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXIII, 2017, 116 : 117 - 124
  • [2] High order edge finite element approximations for the time-harmonic Maxwell's equations
    Bonazzoli, Marcella
    Gaburro, Elena
    Dolean, Victorita
    Rapetti, Francesca
    [J]. 2014 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2014,
  • [3] New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods
    Wang, Chunmei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 127 - 143
  • [4] A FINITE-ELEMENT METHOD FOR APPROXIMATING THE TIME-HARMONIC MAXWELL EQUATIONS
    MONK, P
    [J]. NUMERISCHE MATHEMATIK, 1992, 63 (02) : 243 - 261
  • [5] An example of explicit implementation strategy and preconditioning for the high order edge finite elements applied to the time-harmonic Maxwell's equations
    Bonazzoli, Marcella
    Dolean, Victorita
    Hecht, Frederic
    Rapetti, FranCe
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (05) : 1498 - 1514
  • [6] A discontinuous least squares finite element method for time-harmonic Maxwell equations
    Li, Ruo
    Liu, Qicheng
    Yang, Fanyi
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 817 - 839
  • [7] A weak Galerkin finite element method for indefinite time-harmonic Maxwell equations
    Xie, Yingying
    Tang, Ming
    Tang, Chunming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 435
  • [8] Multiplicative block preconditioner for the time-harmonic Maxwell equations
    Huang, Zhuo-Hong
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (09): : 144 - 152
  • [9] DOMAIN DECOMPOSITION PRECONDITIONING FOR THE HIGH-FREQUENCY TIME-HARMONIC MAXWELL EQUATIONS WITH ABSORPTION
    Bonazzoli, M.
    Dolean, V
    Graham, I. G.
    Spence, E. A.
    Tournier, R-H
    [J]. MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2559 - 2604
  • [10] Dispersive properties of high-order Nedelec/edge element approximation of the time-harmonic Maxwell equations
    Ainsworth, M
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1816): : 471 - 491