Hensel lifting and bivariate polynomial factorisation over finite fields

被引:0
|
作者
Gao, SH [1 ]
Lauder, AGB
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
bivariate polynomial; finite field; Hensel lifting; factorisation; average-case complexity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an average time analysis of a Hensel lifting based factorisation algorithm for bivariate polynomials over finite fields. It is shown that the average running time is almost linear in the input size. This explains why the Hensel lifting technique is fast in practice for most polynomials.
引用
收藏
页码:1663 / 1676
页数:14
相关论文
共 50 条
  • [21] On the polynomial Ramanujan sums over finite fields
    Zhiyong Zheng
    The Ramanujan Journal, 2018, 46 : 863 - 898
  • [22] Complexity of polynomial multiplication over finite fields
    Kaminski, Michael
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 2 - 2
  • [23] On the Dispersions of the Polynomial Maps over Finite Fields
    Schauz, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [24] Faster Polynomial Multiplication over Finite Fields
    Harvey, David
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL OF THE ACM, 2017, 63 (06)
  • [25] Unimodular polynomial matrices over finite fields
    Akansha Arora
    Samrith Ram
    Ayineedi Venkateswarlu
    Journal of Algebraic Combinatorics, 2021, 53 : 1299 - 1312
  • [26] ON POLYNOMIAL FACTORIZATION OVER FINITE-FIELDS
    GUNJI, H
    ARNON, D
    MATHEMATICS OF COMPUTATION, 1981, 36 (153) : 281 - 287
  • [27] POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS
    REED, IS
    SOLOMON, G
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (02): : 300 - 304
  • [28] Linearized polynomial maps over finite fields
    Berson, Joost
    JOURNAL OF ALGEBRA, 2014, 399 : 389 - 406
  • [29] A note on factorisation patterns of division polynomials of elliptic curves over finite fields
    Miret, Josep M.
    Sadornil, Daniel
    Tena, Juan
    Valera, Javier
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2023, 99 (08) : 55 - 60
  • [30] Value sets of bivariate Chebyshev maps over finite fields
    Kucuksakalli, Omer
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 36 : 189 - 202