Hensel lifting and bivariate polynomial factorisation over finite fields

被引:0
|
作者
Gao, SH [1 ]
Lauder, AGB
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
bivariate polynomial; finite field; Hensel lifting; factorisation; average-case complexity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an average time analysis of a Hensel lifting based factorisation algorithm for bivariate polynomials over finite fields. It is shown that the average running time is almost linear in the input size. This explains why the Hensel lifting technique is fast in practice for most polynomials.
引用
收藏
页码:1663 / 1676
页数:14
相关论文
共 50 条
  • [31] Value sets of bivariate folding polynomials over finite fields
    Kucuksakalli, Omer
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 253 - 272
  • [32] VALUE SETS OF POLYNOMIAL MAPS OVER FINITE FIELDS
    Mullen, Gary L.
    Wan, Daqing
    Wang, Qiang
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (04): : 1191 - 1196
  • [33] Prime decomposition of polynomial ideals over finite fields
    Yokoyama, K
    MATHEMATICAL SOFTWARE, PROCEEDINGS, 2002, : 217 - 227
  • [34] SUBSPACES AND POLYNOMIAL FACTORIZATIONS OVER FINITE-FIELDS
    LEE, TCY
    VANSTONE, SA
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1995, 6 (03) : 147 - 157
  • [35] Lifting endomorphisms of formal A-modules over finite fields
    Li, Hua-Chieh
    JOURNAL OF NUMBER THEORY, 2007, 123 (01) : 59 - 70
  • [36] SIDON BASIS IN POLYNOMIAL RINGS OVER FINITE FIELDS
    Kuo, Wentang
    Yamagishi, Shuntaro
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) : 555 - 562
  • [37] Arithmetic properties of polynomial specializations over finite fields
    Pollack, Paul
    ACTA ARITHMETICA, 2009, 136 (01) : 57 - 79
  • [38] ON COVERING SYSTEMS OF POLYNOMIAL RINGS OVER FINITE FIELDS
    Li, Huixi
    Wang, Biao
    Wang, Chunlin
    Yi, Shaoyun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3731 - 3742
  • [39] Inverting bijective polynomial maps over finite fields
    Cafure, Antonio
    Matera, Guillermo
    Waissbein, Ariel
    2006 IEEE INFORMATION THEORY WORKSHOP, 2006, : 27 - +
  • [40] The arithmetic of consecutive polynomial sequences over finite fields
    Gomez-Perez, Domingo
    Ostafe, Alina
    Sha, Min
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 35 - 65