An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation

被引:17
|
作者
Ali, Umair [1 ,2 ]
Sohail, Muhammad [3 ]
Abdullah, Farah Aini [2 ]
机构
[1] AL Fajar Univ, Dept Math, Mari Indus 42350, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
[3] Inst Space Technol, Dept Appl Math & Stat, Islamabad 44000, Pakistan
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 09期
关键词
variable-order fractional sub-diffusion equation; implicit difference method; stability; consistency; convergence; DIFFERENCE SCHEME; SPATIAL ACCURACY;
D O I
10.3390/sym12091437
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The variable-order (VO) fractional calculus can be seen as a natural extension of the constant-order, which can be utilized in physical and biological applications. In this study, we derive a new numerical approximation for the VO fractional Riemann-Liouville integral formula and developed an implicit difference scheme (IDS) for the variable-order fractional sub-diffusion equation (VO-FSDE). The derived approximation used in the VO time fractional derivative with the central difference approximation for the space derivative. Investigated the unconditional stability by the van Neumann method, consistency, and convergence analysis of the proposed scheme. Finally, a numerical example is presented to verify the theoretical analysis and effectiveness of the proposed scheme.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 775 - 791
  • [32] Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions
    Ren, Jincheng
    Sun, Zhi-Zhong
    Zhao, Xuan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) : 456 - 467
  • [33] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [34] Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation
    Zheng, Xiangcheng
    Li, Yiqun
    Cheng, Jin
    Wang, Hong
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (02): : 219 - 231
  • [35] On an accurate discretization of a variable-order fractional reaction-diffusion equation
    Hajipour, Mojtaba
    Jajarmi, Amin
    Baleanu, Dumitru
    Sun, HongGuang
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 119 - 133
  • [37] Meshfree methods for the variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Yang, Jiye
    Liu, Zhiyong
    Xu, Qiuyan
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 : 489 - 514
  • [38] Numerical algorithm for the variable-order Caputo fractional functional differential equation
    Bhrawy, A. H.
    Zaky, M. A.
    [J]. NONLINEAR DYNAMICS, 2016, 85 (03) : 1815 - 1823
  • [39] Analysis and numerical solution of a nonlinear variable-order fractional differential equation
    Hong Wang
    Xiangcheng Zheng
    [J]. Advances in Computational Mathematics, 2019, 45 : 2647 - 2675
  • [40] Numerical algorithm for the variable-order Caputo fractional functional differential equation
    A. H. Bhrawy
    M. A. Zaky
    [J]. Nonlinear Dynamics, 2016, 85 : 1815 - 1823