Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation

被引:5
|
作者
Zheng, Xiangcheng [1 ]
Li, Yiqun [1 ]
Cheng, Jin [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29208 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Inverse problem; variable-order space-fractional diffusion equation; uniqueness of the determination of the variable order; spectral-Galerkin method; finite difference method; Levenberg Marquardt algorithm; ANOMALOUS DIFFUSION;
D O I
10.1515/jiip-2019-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues. In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain. We base on the analysis to develop a spectral-Galerkin Levenberg Marquardt method and a finite difference Levenberg-Marquardt method to numerically invert the variable order. We carry out numerical experiments to investigate the numerical performance of these methods.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
  • [1] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    [J]. APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [2] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    [J]. Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [3] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    [J]. NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [4] Space-Fractional Diffusion with Variable Order and Diffusivity: Discretization and Direct Solution Strategies
    Hasnaa Alzahrani
    George Turkiyyah
    Omar Knio
    David Keyes
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 1416 - 1440
  • [5] Space-Fractional Diffusion with Variable Order and Diffusivity: Discretization and Direct Solution Strategies
    Alzahrani, Hasnaa
    Turkiyyah, George
    Knio, Omar
    Keyes, David
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (04) : 1416 - 1440
  • [6] A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [7] The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fractional Derivatives
    Xue, Guangming
    Lin, Funing
    Su, Guangwang
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [8] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    [J]. INVERSE PROBLEMS, 2019, 35 (12)
  • [9] On the Variable-order Fractional Laplacian Equation with Variable Growth on RN
    Nguyen Van Thin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (06): : 1187 - 1223
  • [10] Analysis and discretization of a variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104