An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation

被引:17
|
作者
Ali, Umair [1 ,2 ]
Sohail, Muhammad [3 ]
Abdullah, Farah Aini [2 ]
机构
[1] AL Fajar Univ, Dept Math, Mari Indus 42350, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
[3] Inst Space Technol, Dept Appl Math & Stat, Islamabad 44000, Pakistan
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 09期
关键词
variable-order fractional sub-diffusion equation; implicit difference method; stability; consistency; convergence; DIFFERENCE SCHEME; SPATIAL ACCURACY;
D O I
10.3390/sym12091437
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The variable-order (VO) fractional calculus can be seen as a natural extension of the constant-order, which can be utilized in physical and biological applications. In this study, we derive a new numerical approximation for the VO fractional Riemann-Liouville integral formula and developed an implicit difference scheme (IDS) for the variable-order fractional sub-diffusion equation (VO-FSDE). The derived approximation used in the VO time fractional derivative with the central difference approximation for the space derivative. Investigated the unconditional stability by the van Neumann method, consistency, and convergence analysis of the proposed scheme. Finally, a numerical example is presented to verify the theoretical analysis and effectiveness of the proposed scheme.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] AN EFFICIENT APPROACH FOR SOLVING FRACTIONAL VARIABLE ORDER REACTION SUB-DIFFUSION BASED ON HERMITE FORMULA
    Adel, Mohamed
    Elsaid, Mohamed
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [22] On the sub-diffusion fractional initial value problem with time variable order
    Cuesta, Eduardo
    Kirane, Mokhtar
    Alsaedi, Ahmed
    Ahmad, Bashir
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 1301 - 1315
  • [23] Numerical studies for the variable-order nonlinear fractional wave equation
    N. H. Sweilam
    M. M. Khader
    H. M. Almarwm
    [J]. Fractional Calculus and Applied Analysis, 2012, 15 : 669 - 683
  • [24] Numerical simulation for the three-dimension fractional sub-diffusion equation
    Chen, J.
    Liu, F.
    Liu, Q.
    Chen, X.
    Anh, V.
    Turner, I.
    Burrage, K.
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3695 - 3705
  • [25] Numerical studies for the variable-order nonlinear fractional wave equation
    Sweilam, N. H.
    Khader, M. M.
    Almarwm, H. M.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 669 - 683
  • [26] A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay
    Li, Jing
    Kang, Xinyue
    Shi, Xingyun
    Song, Yufei
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 101 - 111
  • [27] A second order box-type scheme for fractional sub-diffusion equation with spatially variable coefficient under Neumann boundary conditions
    Zhang, Pu
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [28] A second order box-type scheme for fractional sub-diffusion equation with spatially variable coefficient under Neumann boundary conditions
    Pu Zhang
    [J]. Advances in Difference Equations, 2017
  • [29] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [30] New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order
    Ran, Maohua
    Zhang, Chengjian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 129 : 58 - 70