An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation

被引:17
|
作者
Ali, Umair [1 ,2 ]
Sohail, Muhammad [3 ]
Abdullah, Farah Aini [2 ]
机构
[1] AL Fajar Univ, Dept Math, Mari Indus 42350, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
[3] Inst Space Technol, Dept Appl Math & Stat, Islamabad 44000, Pakistan
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 09期
关键词
variable-order fractional sub-diffusion equation; implicit difference method; stability; consistency; convergence; DIFFERENCE SCHEME; SPATIAL ACCURACY;
D O I
10.3390/sym12091437
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The variable-order (VO) fractional calculus can be seen as a natural extension of the constant-order, which can be utilized in physical and biological applications. In this study, we derive a new numerical approximation for the VO fractional Riemann-Liouville integral formula and developed an implicit difference scheme (IDS) for the variable-order fractional sub-diffusion equation (VO-FSDE). The derived approximation used in the VO time fractional derivative with the central difference approximation for the space derivative. Investigated the unconditional stability by the van Neumann method, consistency, and convergence analysis of the proposed scheme. Finally, a numerical example is presented to verify the theoretical analysis and effectiveness of the proposed scheme.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] ANALYSIS AND IMPLEMENTATION OF NUMERICAL SCHEME FOR THE VARIABLE-ORDER FRACTIONAL MODIFIED SUB-DIFFUSION EQUATION
    Ali, Umair
    Naeem, Muhammad
    Abdullah, Farah Aini
    Wang, Miao-kun
    Salama, Fouad Mohammad
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [2] Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient
    Zhao, Xuan
    Xu, Qinwu
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3848 - 3859
  • [3] A New Implicit Numerical Scheme for Fractional Sub-diffusion Equation
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. 2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [4] A NEW NUMERICAL METHOD FOR SOLVING TWO-DIMENSIONAL VARIABLE-ORDER ANOMALOUS SUB-DIFFUSION EQUATION
    Jiang, Wei
    Guo, Beibei
    [J]. THERMAL SCIENCE, 2016, 20 : S701 - S710
  • [5] A high-order difference scheme for the fractional sub-diffusion equation
    Hao, Zhao-peng
    Lin, Guang
    Sun, Zhi-zhong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (02) : 405 - 426
  • [6] Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations
    Zhang, Jia-Li
    Fang, Zhi-Wei
    Sun, Hai-Wei
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01) : 200 - 226
  • [7] Nonpolynomial Numerical Scheme for Fourth-Order Fractional Sub-diffusion Equations
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [8] A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (03) : 959 - 985
  • [9] A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation
    Cui-cui Ji
    Zhi-zhong Sun
    [J]. Journal of Scientific Computing, 2015, 64 : 959 - 985
  • [10] A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures
    Chen, Wen
    Zhang, Jianjun
    Zhang, Jinyang
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 76 - 92