Nonpolynomial Numerical Scheme for Fourth-Order Fractional Sub-diffusion Equations

被引:4
|
作者
Li, Xuhao [1 ]
Wong, Patricia J. Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
DIFFERENCE SCHEME; WAVE EQUATION;
D O I
10.1063/1.4992370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall develop a high order numerical scheme for a fourth-order fractional sub-diffusion problem. Theoretical results will be established in maximum norm and it is shown that the convergence order is higher than some earlier work done. Numerical experiments will be carried out to demonstrate the efficiency of the proposed scheme as well as to compare with other methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A COMPACT DIFFERENCE SCHEME FOR FOURTH-ORDER FRACTIONAL SUB-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS
    Yao, Zhongsheng
    Wang, Zhibo
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1159 - 1169
  • [2] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Zhang, Pu
    Pu, Hai
    [J]. NUMERICAL ALGORITHMS, 2017, 76 (02) : 573 - 598
  • [3] Second Order Compact Difference Scheme for Time Fractional Sub-diffusion Fourth-Order Neutral Delay Differential Equations
    Nandal, Sarita
    Pandey, Dwijendra Narain
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (01) : 69 - 86
  • [4] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Pu Zhang
    Hai Pu
    [J]. Numerical Algorithms, 2017, 76 : 573 - 598
  • [5] Second Order Compact Difference Scheme for Time Fractional Sub-diffusion Fourth-Order Neutral Delay Differential Equations
    Sarita Nandal
    Dwijendra Narain Pandey
    [J]. Differential Equations and Dynamical Systems, 2021, 29 : 69 - 86
  • [6] A reliable implicit difference scheme for treatments of fourth-order fractional sub-diffusion equation
    Sayevand, K.
    Arjang, F.
    [J]. SCIENTIA IRANICA, 2017, 24 (03) : 1100 - 1107
  • [7] Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations
    Pu, Zhe
    Ran, Maohua
    Luo, Hong
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 291 - 309
  • [8] A fourth-order scheme for space fractional diffusion equations
    Guo, Xu
    Li, Yutian
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 : 410 - 424
  • [9] Numerical Algorithms with High Spatial Accuracy for the Fourth-Order Fractional Sub-Diffusion Equations with the First Dirichlet Boundary Conditions
    Ji, Cui-cui
    Sun, Zhi-zhong
    Hao, Zhao-peng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 1148 - 1174
  • [10] Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (05):