Nonpolynomial Numerical Scheme for Fourth-Order Fractional Sub-diffusion Equations

被引:4
|
作者
Li, Xuhao [1 ]
Wong, Patricia J. Y. [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
DIFFERENCE SCHEME; WAVE EQUATION;
D O I
10.1063/1.4992370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall develop a high order numerical scheme for a fourth-order fractional sub-diffusion problem. Theoretical results will be established in maximum norm and it is shown that the convergence order is higher than some earlier work done. Numerical experiments will be carried out to demonstrate the efficiency of the proposed scheme as well as to compare with other methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Numerical Solution of Fourth-order Fractional Diffusion Wave Model
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [32] A non-polynomial numerical scheme for fourth-order fractional diffusion-wave model
    Li, Xuhao
    Wong, Patricia J. Y.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 80 - 95
  • [33] Orthonormal discrete Legendre polynomials for stochastic distributed-order time-fractional fourth-order delay sub-diffusion equation
    Heydari, M. H.
    Razzaghi, M.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, : 14304 - 14320
  • [34] Numerical solution of non-linear fourth order fractional sub-diffusion wave equation with time delay
    Nandal, Sarita
    Pandey, Dwijendra Narain
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
  • [35] Waveform relaxation for fractional sub-diffusion equations
    Jun Liu
    Yao-Lin Jiang
    Xiao-Long Wang
    Yan Wang
    [J]. Numerical Algorithms, 2021, 87 : 1445 - 1478
  • [36] Waveform relaxation for fractional sub-diffusion equations
    Liu, Jun
    Jiang, Yao-Lin
    Wang, Xiao-Long
    Wang, Yan
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (04) : 1445 - 1478
  • [37] Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations
    Xing, Zhiyong
    Wen, Liping
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 155 - 166
  • [38] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    M. R. Hooshmandasl
    M. H. Heydari
    C. Cattani
    [J]. The European Physical Journal Plus, 131
  • [39] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [40] FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS
    Chen, Minghua
    Deng, Weihua
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1418 - 1438