Second Order Compact Difference Scheme for Time Fractional Sub-diffusion Fourth-Order Neutral Delay Differential Equations

被引:0
|
作者
Sarita Nandal
Dwijendra Narain Pandey
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
关键词
Neutral delay differential equations; Compact difference scheme; Stability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a compact difference scheme of second order temporal convergence for the analysis of sub-diffusion fourth-order neutral fractional delay differential equations. In this regard, a difference scheme combining the compact difference operator for spatial discretization along with L2-1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L2-1_{\sigma }$$\end{document} formula for Caputo fractional derivative is constructed and analyzed. Unique solvability, stability, and convergence of the proposed scheme are proved using the discrete energy method in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} norm. Established scheme is of second-order convergence in time and fourth-order convergence in spatial dimension, i.e., O(τ3-α+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^{3-\alpha }+h^4)$$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document} and h are time and space mesh sizes respectively and α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}. Finally, some numerical experiments are given to show the authenticity, efficiency, and accuracy of our theoretical results.
引用
收藏
页码:69 / 86
页数:17
相关论文
共 50 条