Computing multiple pitchfork bifurcation points

被引:2
|
作者
Ponisch, G
Schnabel, U
Schwetlick, H
机构
[1] Inst. für Numerische Mathematik, Technische Universität Dresden
关键词
parameterized nonlinear equations; singular points; pitchfork bifurcation points; minimally extended systems; Newton's method;
D O I
10.1007/BF02684441
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A point (x*, lambda*) is called a pitchfork bifurcation point of multiplicity p greater than or equal to 1 of the nonlinear system F(x, lambda) = 0, F:R-n x R-n --> R-n, if rank delta(x)F(x*, lambda*)= n - 1, and if the Ljapunov-Schmidt reduced equation has the normally form g(xi, mu) = +/- xi(2+p) +/- mu xi = 0. It is shown that such points satisfy a minimally extended system G(y) = 0, G:Rn+2 --> Rn+2 the dimension n + 2 of which is independent of p. For solving this system, a two-stage Newton-type method is proposed. Some numerical tests show the influence of the starting point and of the bordering vectors used in the definition of the extended system on the behavior of the iteration.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 50 条
  • [41] SINGULAR POINTS OF PLANE CURVES GENERATED BY PERIOD DOUBLING BIFURCATION POINTS AND A METHOD FOR COMPUTING THEM
    Yamamoto, Norio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (04): : 795 - 802
  • [42] Pitchfork bifurcation for non-autonomous interval maps
    D'Aniello, Emma
    Oliveira, Henrique
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (03) : 291 - 302
  • [43] The non-smooth pitchfork bifurcation: a renormalization analysis
    Adamson, L. N. C.
    Osbaldestin, A. H.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2015, 30 (02): : 224 - 240
  • [44] On the Hopf-pitchfork bifurcation in the Chua's equation
    Algaba, A
    Merino, M
    Freire, E
    Gamero, E
    Rodríguez-Luis, AJ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (02): : 291 - 305
  • [45] On computing multiple change points for the gamma distribution
    Xiao, Xun
    Chen, Piao
    Ye, Zhisheng
    Tsui, Kwok-Leung
    JOURNAL OF QUALITY TECHNOLOGY, 2021, 53 (03) : 267 - 288
  • [46] Structural stability of the pitchfork bifurcation of thermal convection in a rectangular cavity
    Mizushima, J
    Adachi, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (12) : 4670 - 4683
  • [47] PITCHFORK SUBCRITICAL BIFURCATION IN A CO-2 LASER WITH FEEDBACK
    WANG, PY
    LAPUCCI, A
    MEUCCI, R
    ARECCHI, FT
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1991, (115): : 293 - 295
  • [48] A homotopy method of switching solution branches at the pitchfork bifurcation point
    Cong, YH
    Zhu, ZY
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (03) : 299 - 308
  • [49] HYSTERESIS, PERIODIC OSCILLATION AND PITCHFORK BIFURCATION IN A COUPLED MAPPING SYSTEM
    CHERN, JL
    MCIVER, JK
    PHYSICS LETTERS A, 1989, 142 (2-3) : 99 - 106
  • [50] Fold-Pitchfork Bifurcation, Arnold Tongues and Multiple Chaotic Attractors in a Minimal Network of Three Sigmoidal Neurons
    Horikawa, Yo
    Kitajima, Hiroyuki
    Matsushita, Haruna
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (10):