Computing multiple pitchfork bifurcation points

被引:2
|
作者
Ponisch, G
Schnabel, U
Schwetlick, H
机构
[1] Inst. für Numerische Mathematik, Technische Universität Dresden
关键词
parameterized nonlinear equations; singular points; pitchfork bifurcation points; minimally extended systems; Newton's method;
D O I
10.1007/BF02684441
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A point (x*, lambda*) is called a pitchfork bifurcation point of multiplicity p greater than or equal to 1 of the nonlinear system F(x, lambda) = 0, F:R-n x R-n --> R-n, if rank delta(x)F(x*, lambda*)= n - 1, and if the Ljapunov-Schmidt reduced equation has the normally form g(xi, mu) = +/- xi(2+p) +/- mu xi = 0. It is shown that such points satisfy a minimally extended system G(y) = 0, G:Rn+2 --> Rn+2 the dimension n + 2 of which is independent of p. For solving this system, a two-stage Newton-type method is proposed. Some numerical tests show the influence of the starting point and of the bordering vectors used in the definition of the extended system on the behavior of the iteration.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 50 条
  • [21] Hopf-Pitchfork bifurcation in a simplified BAM neural network model with multiple delays
    Dong, Tao
    Liao, Xiaofeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 253 : 222 - 234
  • [22] Pitchfork Bifurcation of a Class of Discrete Dynamical Systems
    Chin Hee, Pah
    2ND INTERNATIONAL CONFERENCE AND WORKSHOP ON MATHEMATICAL ANALYSIS 2016 (ICWOMA2016), 2017, 1795
  • [23] Pitchfork Bifurcation of the Mixed Convection in a Vertical Channel
    Kholai, Omar
    Boudebous, Saadoun
    Nemouchi, Zoubir
    Rebay, Mourad
    HEAT TRANSFER RESEARCH, 2010, 41 (03) : 313 - 323
  • [24] Semiclassical trace formulas for pitchfork bifurcation sequences
    Kaidel, J
    Brack, M
    PHYSICAL REVIEW E, 2004, 70 (01): : 21
  • [25] HOPF-BIFURCATION AT A DEGENERATE STATIONARY PITCHFORK
    LAUTERBACH, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (04) : 339 - 351
  • [26] Bifurcation Diagram of a Map with Multiple Critical Points
    Romera, M.
    Pastor, G.
    Danca, M. -F.
    Martin, A.
    Orue, A. B.
    Montoya, F.
    Hernandez Encinas, L.
    Tundrca, E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [27] SLOW PASSAGE THROUGH MULTIPLE BIFURCATION POINTS
    Do, Younghae
    Lopez, Juan M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 95 - 107
  • [28] The pitchfork bifurcation and vibrational resonance in a quintic oscillator
    Yang Jian-Hua
    Liu Hou-Guang
    Cheng Gang
    ACTA PHYSICA SINICA, 2013, 62 (18)
  • [29] Bifurcations of heteroclinic loop accompanied by pitchfork bifurcation
    Fengjie Geng
    Yancong Xu
    Nonlinear Dynamics, 2012, 70 : 1645 - 1655
  • [30] SPECTRAL SIGNATURE OF THE PITCHFORK BIFURCATION - LIOUVILLE EQUATION APPROACH
    GASPARD, P
    NICOLIS, G
    PROVATA, A
    TASAKI, S
    PHYSICAL REVIEW E, 1995, 51 (01): : 74 - 94