Computing multiple pitchfork bifurcation points

被引:2
|
作者
Ponisch, G
Schnabel, U
Schwetlick, H
机构
[1] Inst. für Numerische Mathematik, Technische Universität Dresden
关键词
parameterized nonlinear equations; singular points; pitchfork bifurcation points; minimally extended systems; Newton's method;
D O I
10.1007/BF02684441
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A point (x*, lambda*) is called a pitchfork bifurcation point of multiplicity p greater than or equal to 1 of the nonlinear system F(x, lambda) = 0, F:R-n x R-n --> R-n, if rank delta(x)F(x*, lambda*)= n - 1, and if the Ljapunov-Schmidt reduced equation has the normally form g(xi, mu) = +/- xi(2+p) +/- mu xi = 0. It is shown that such points satisfy a minimally extended system G(y) = 0, G:Rn+2 --> Rn+2 the dimension n + 2 of which is independent of p. For solving this system, a two-stage Newton-type method is proposed. Some numerical tests show the influence of the starting point and of the bordering vectors used in the definition of the extended system on the behavior of the iteration.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 50 条
  • [11] THEORY FOR RELAXATION AT A SUBCRITICAL PITCHFORK BIFURCATION
    COLET, P
    DEPASQUALE, F
    CACERES, MO
    SANMIGUEL, M
    PHYSICAL REVIEW A, 1990, 41 (04): : 1901 - 1911
  • [12] Pitchfork phase "bifurcation" of isolator stiffness
    Kari, L
    JOURNAL OF SOUND AND VIBRATION, 2002, 251 (02) : 373 - 376
  • [13] Slow passage through a pitchfork bifurcation
    Maree, GJM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (03) : 889 - 918
  • [14] The reversible homoclinic pitchfork bifurcation revisited
    Wagenknecht, T
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 978 - 983
  • [15] Additive noise destroys a pitchfork bifurcation
    Crauel H.
    Flandoli F.
    Journal of Dynamics and Differential Equations, 1998, 10 (2) : 259 - 274
  • [16] Stochastic resonance of a pitchfork bifurcation system
    Zhang, GJ
    Xu, JX
    ADVANCES IN STOCHASTIC STRUCTURAL DYNAMICS, 2003, : 535 - 541
  • [17] COMPUTING BIFURCATION POINTS VIA CHARACTERISTIC GAIN LOCI
    MOIOLA, J
    DESAGES, A
    ROMAGNOLI, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (03) : 358 - 362
  • [18] Bifurcations of heteroclinic loop accompanied by pitchfork bifurcation
    Geng, Fengjie
    Xu, Yancong
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1645 - 1655
  • [19] Time-reversible and equivariant pitchfork bifurcation
    Lim, CC
    McComb, IH
    PHYSICA D, 1998, 112 (1-2): : 117 - 121
  • [20] The 0:1 resonance bifurcation associated with the supercritical Hamiltonian pitchfork bifurcation
    Zhou, Xing
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2023, 38 (03): : 427 - 452