ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES

被引:0
|
作者
Yun, Sungsik [1 ]
Lee, Jung Rye [2 ]
Park, Choonkil [3 ]
Shin, Dong Yun [4 ]
机构
[1] Hanshin Univ, Dept Financial Math, Gyeonggi Do 18101, South Korea
[2] Daejin Univ, Dept Math, Kyunggi 11159, South Korea
[3] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
[4] Univ Seoul, Dept Math, Seoul 02504, South Korea
关键词
Hyers-Ulam stability; additive-quadratic rho-functional inequality; Banach space; ULAM-RASSIAS STABILITY; ASTERISK-HOMOMORPHISMS; EQUATION; ALGEBRAS; SUPERSTABILITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let M(1)f(x,y): = 3/4 f(x + y) - 1/4 f(-x -y) +1/4f(x - y) + 1/4f (y - x) - f (x) - f(y), M(2)f(x, y) := 2f (x+ y/2) + f(x-y/2)+f(y-x/2) f(x) - f(y). We solve the additive-quadratic rho-functional inequalities parallel to M(1)f(x,y)parallel to <= parallel to rho M(2)f(x, y)parallel to, (0.1) where rho is a fixed complex number with vertical bar rho vertical bar < 1/2 and parallel to M(2)f(x,y)parallel to <= parallel to rho M(1)f(x,y)parallel to, (0.2) where rho is a fixed complex number with vertical bar rho vertical bar < 1. Using the direct method, we prove the Hyers-Ulam stability of the additive -quadratic rho-functional inequalities (0.1) and (0.2) in complex Banach spaces.
引用
收藏
页码:1203 / 1215
页数:13
相关论文
共 50 条
  • [31] Stabilities and instabilities of additive-quadratic 3D functional equations in paranormed spaces
    Karthikeyan, S.
    Kumar, T. R. K.
    Vijayakumar, S.
    Palani, P.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (01): : 37 - 51
  • [32] Hyers-Ulam-Rassias stability of the additive-quadratic mappings in non-Archimedean Banach spaces
    Park, C.
    Kenary, H. Azadi
    Rassias, T. M.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [33] FUZZY STABILITY OF A CLASS OF ADDITIVE-QUADRATIC FUNCTIONAL EQUATIONS
    Kim, Chang Il
    Han, Giljun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (06) : 1043 - 1055
  • [34] Stability of Mixed Additive-Quadratic and Additive-Drygas Functional Equations
    Choi, Chang-Kwon
    Lee, Bogeun
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [35] Stability of additive-quadratic 3D functional equation in modular spaces by direct method
    Rassias, John M.
    Karthikeyan, S.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (08)
  • [36] Hyers-Ulam stability of an additive-quadratic functional equation
    Govindan, Vediyappan
    Park, Choonkil
    Pinelas, Sandra
    Rassias, Themistocles M.
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (02): : 233 - 255
  • [37] Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces
    Wang, Zhihua
    [J]. AIMS MATHEMATICS, 2023, 8 (11): : 25422 - 25442
  • [38] Fixed points and fuzzy stability of an additive-quadratic functional equation
    Park, Choonkil
    Najati, Abbas
    Jang, Sun Young
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 452 - 462
  • [39] QUADRATIC rho-FUNCTIONAL INEQUALITIES IN BANACH SPACES: A FIXED POINT APPROACH
    Park, Choonkil
    Seo, Jeong Pil
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2015, 23 (02): : 231 - 248
  • [40] FIXED POINT AND QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN BANACH SPACES
    Lee, Jung Rye
    Shin, Dong Yun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (03) : 482 - 492