Hyers-Ulam-Rassias stability of the additive-quadratic mappings in non-Archimedean Banach spaces

被引:1
|
作者
Park, C. [1 ]
Kenary, H. Azadi [2 ]
Rassias, T. M. [3 ]
机构
[1] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[2] Univ Yasuj, Dept Math, Coll Sci, Yasuj 75914353, Iran
[3] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
Hyers-Ulam stability; fixed point method; non-Archimedean normed spaces; CAUCHY FUNCTIONAL-EQUATION;
D O I
10.1186/1029-242X-2012-174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the fixed point and direct methods, we prove the generalized Hyers-Ulam stability of the following additive-quadratic functional equation in non-Archimedean normed spaces r[f(x + y + z/s) + f(x - y + z/s) + f(x + y - z/s) + f(-x + y + z/s)] = gamma f(x) + gamma f(y) + gamma f(z), where r, s, gamma are positive real numbers.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Hyers-Ulam-Rassias stability of the additive-quadratic mappings in non-Archimedean Banach spaces
    C Park
    H Azadi Kenary
    TM Rassias
    [J]. Journal of Inequalities and Applications, 2012
  • [2] Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping
    Kenary, Hassan Azadi
    Rassias, Themistocles M.
    Rezaei, H.
    Talebzadeh, S.
    Park, Won-Gil
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [3] On the Hyers-Ulam-Rassias stability of generalized quadratic mappings in Banach modules
    Park, CG
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) : 214 - 223
  • [4] Solution and Hyers-Ulam-Rassias Stability of Generalized Mixed Type Additive-Quadratic Functional Equations in Fuzzy Banach Spaces
    Gordji, M. Eshaghi
    Kenary, H. Azadi
    Rezaei, H.
    Lee, Y. W.
    Kim, G. H.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [5] Hyers-Ulam-Rassias Stability of Additive Mappings in Fuzzy Normed Spaces
    Wu, Jianrong
    Lu, Lingxiao
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] On the Hyers-Ulam-Rassias stability of approximately additive mappings
    Jung, SM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (01) : 221 - 226
  • [7] Hyers-Ulam-Rassias Stability of a Quadratic and Additive Functional Equation in Quasi-Banach Spaces
    Moradlou, Fridoun
    Vaezi, Hamid
    Eskandani, G. Zamani
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2009, 6 (02) : 233 - 248
  • [8] ON THE GENERALIZED HYERS-ULAM STABILITY OF QUARTIC MAPPINGS IN NON-ARCHIMEDEAN BANACH SPACES
    Kenary, H. Azadi
    Keshavarz, H.
    Park, C.
    Shin, D. Y.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02): : 553 - 569
  • [9] A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS
    GAVRUTA, P
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) : 431 - 436
  • [10] Non-Archimedean Hyers-Ulam-Rassias stability of m-variable functional equation
    Kenary, H. Azadi
    Rezaei, H.
    Sharifzadeh, M.
    Shin, D. Y.
    Lee, J. R.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2012,