Hyers-Ulam-Rassias Stability of a Quadratic and Additive Functional Equation in Quasi-Banach Spaces

被引:18
|
作者
Moradlou, Fridoun [1 ]
Vaezi, Hamid [2 ]
Eskandani, G. Zamani [2 ]
机构
[1] Sahand Univ Technol, Dept Math, Tabriz, Iran
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
关键词
Hyers-Ulam-Rassias stability; quadratic function; additive function; quasi-Banach space; p-Banach space;
D O I
10.1007/s00009-009-0007-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the general solution of the functional equation integral(x + 2y) + integral(x - 2y) + 4 integral(x) = 3[integral(x + y) + integral(x - y)] + integral(2y) - 2 integral(y) and investigate the Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条