ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES

被引:0
|
作者
Yun, Sungsik [1 ]
Lee, Jung Rye [2 ]
Park, Choonkil [3 ]
Shin, Dong Yun [4 ]
机构
[1] Hanshin Univ, Dept Financial Math, Gyeonggi Do 18101, South Korea
[2] Daejin Univ, Dept Math, Kyunggi 11159, South Korea
[3] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
[4] Univ Seoul, Dept Math, Seoul 02504, South Korea
关键词
Hyers-Ulam stability; additive-quadratic rho-functional inequality; Banach space; ULAM-RASSIAS STABILITY; ASTERISK-HOMOMORPHISMS; EQUATION; ALGEBRAS; SUPERSTABILITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let M(1)f(x,y): = 3/4 f(x + y) - 1/4 f(-x -y) +1/4f(x - y) + 1/4f (y - x) - f (x) - f(y), M(2)f(x, y) := 2f (x+ y/2) + f(x-y/2)+f(y-x/2) f(x) - f(y). We solve the additive-quadratic rho-functional inequalities parallel to M(1)f(x,y)parallel to <= parallel to rho M(2)f(x, y)parallel to, (0.1) where rho is a fixed complex number with vertical bar rho vertical bar < 1/2 and parallel to M(2)f(x,y)parallel to <= parallel to rho M(1)f(x,y)parallel to, (0.2) where rho is a fixed complex number with vertical bar rho vertical bar < 1. Using the direct method, we prove the Hyers-Ulam stability of the additive -quadratic rho-functional inequalities (0.1) and (0.2) in complex Banach spaces.
引用
收藏
页码:1203 / 1215
页数:13
相关论文
共 50 条