Multi-modal human aggression detection

被引:40
|
作者
Kooij, J. F. P. [1 ]
Liem, M. C. [1 ]
Krijnders, J. D. [2 ,3 ]
Andringa, T. C. [2 ]
Gavrila, D. M. [1 ]
机构
[1] Univ Amsterdam, Fac Sci, Intelligent Syst Lab, Amsterdam, Netherlands
[2] Univ Groningen, Artificial Intelligence, Auditory Cognit Grp, Groningen, Netherlands
[3] INCAS3, Cognit Syst Grp, Assen, Netherlands
关键词
Automated video surveillance; Multi-modal sensor fusion; Aggression detection; Dynamic Bayesian Network; EVENT RECOGNITION; MARKOV-MODELS; PEOPLE; TRACKING; LISTENERS; SPACE;
D O I
10.1016/j.cviu.2015.06.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a smart surveillance system named CASSANDRA, aimed at detecting instances of aggressive human behavior in public environments. A distinguishing aspect of CASSANDRA is the exploitation of complementary audio and video cues to disambiguate scene activity in real-life environments. From the video side, the system uses overlapping cameras to track persons in 3D and to extract features regarding the limb motion relative to the torso. From the audio side, it classifies instances of speech, screaming, singing, and kicking-object. The audio and video cues are fused with contextual cues (interaction, auxiliary objects); a Dynamic Bayesian Network (DBN) produces an estimate of the ambient aggression level. Our prototype system is validated on a realistic set of scenarios performed by professional actors at an actual train station to ensure a realistic audio and video noise setting. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:106 / 120
页数:15
相关论文
共 50 条
  • [31] Human factors of multi-modal ubiquitous computing
    Haniff, DJ
    Baber, C
    Edmondson, W
    [J]. HANDHELD AND UBIQUITOUS COMPUTING, PROCEEDINGS, 1999, 1707 : 346 - 348
  • [32] A Multi-Modal Approach to Sensing Human Emotion
    Gibilisco, Hannah
    Laubenberger, Michael
    Spiridonov, Valerii
    Belga, Jacob
    Hallstrom, Jason O.
    Peluso, Paul R.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2499 - 2502
  • [33] A multi-modal parcellation of human cerebral cortex
    Matthew F. Glasser
    Timothy S. Coalson
    Emma C. Robinson
    Carl D. Hacker
    John Harwell
    Essa Yacoub
    Kamil Ugurbil
    Jesper Andersson
    Christian F. Beckmann
    Mark Jenkinson
    Stephen M. Smith
    David C. Van Essen
    [J]. Nature, 2016, 536 : 171 - 178
  • [34] Multi-modal Sensing for Human Activity Recognition
    Bruno, Barbara
    Grosinger, Jasmin
    Mastrogiovanni, Fulvio
    Pecora, Federico
    Saffiotti, Alessandro
    Sathyakeerthy, Subhash
    Sgorbissa, Antonio
    [J]. 2015 24TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2015, : 594 - 600
  • [35] A multi-modal parcellation of human cerebral cortex
    Glasser, Matthew F.
    Coalson, Timothy S.
    Robinson, Emma C.
    Hacker, Carl D.
    Harwell, John
    Yacoub, Essa
    Ugurbil, Kamil
    Andersson, Jesper
    Beckmann, Christian F.
    Jenkinson, Mark
    Smith, Stephen M.
    Van Essen, David C.
    [J]. NATURE, 2016, 536 (7615) : 171 - +
  • [36] Multi-modal biometrics involving the human ear
    Middendorff, Christopher
    Bowyer, Kevin W.
    Yan, Ping
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3905 - +
  • [37] Are You Sure? - Multi-Modal Human Decision Uncertainty Detection in Human-Robot Interaction
    Scherf, Lisa
    Gasche, Lisa Alina
    Chemangui, Eya
    Koert, Dorothea
    [J]. PROCEEDINGS OF THE 2024 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, HRI 2024, 2024, : 621 - 629
  • [38] A multi-subject, multi-modal human neuroimaging dataset
    Wakeman, Daniel G.
    Henson, Richard N.
    [J]. SCIENTIFIC DATA, 2015, 2
  • [39] A multi-subject, multi-modal human neuroimaging dataset
    Daniel G Wakeman
    Richard N Henson
    [J]. Scientific Data, 2
  • [40] Multi-Modal Sarcasm Detection with Interactive In-Modal and Cross-Modal Graphs
    Liang, Bin
    Lou, Chenwei
    Li, Xiang
    Gui, Lin
    Yang, Min
    Xu, Ruifeng
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4707 - 4715