A multi-modal parcellation of human cerebral cortex

被引:0
|
作者
Matthew F. Glasser
Timothy S. Coalson
Emma C. Robinson
Carl D. Hacker
John Harwell
Essa Yacoub
Kamil Ugurbil
Jesper Andersson
Christian F. Beckmann
Mark Jenkinson
Stephen M. Smith
David C. Van Essen
机构
[1] Washington University Medical School,Department of Neuroscience
[2] FMRIB Centre,Nuffield Department of Clinical Neurosciences
[3] John Radcliffe Hospital,Department of Computing
[4] University of Oxford,Department of Biomedical Engineering
[5] Imperial College,Department of Cognitive Neuroscience
[6] Washington University,undefined
[7] Center for Magnetic Resonance Research (CMRR),undefined
[8] University of Minnesota,undefined
[9] Donders Institute for Brain,undefined
[10] Cognition and Behavior,undefined
[11] Radboud University,undefined
[12] Radboud University Medical Centre Nijmegen,undefined
来源
Nature | 2016年 / 536卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal ‘fingerprint’ of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.
引用
收藏
页码:171 / 178
页数:7
相关论文
共 50 条
  • [1] A multi-modal parcellation of human cerebral cortex
    Glasser, Matthew F.
    Coalson, Timothy S.
    Robinson, Emma C.
    Hacker, Carl D.
    Harwell, John
    Yacoub, Essa
    Ugurbil, Kamil
    Andersson, Jesper
    Beckmann, Christian F.
    Jenkinson, Mark
    Smith, Stephen M.
    Van Essen, David C.
    [J]. NATURE, 2016, 536 (7615) : 171 - +
  • [2] A flexible graphical model for multi-modal parcellation of the cortex
    Parisot, Sarah
    Glocker, Ben
    Ktena, Sofia Ira
    Arslan, Salim
    Schirmer, Markus D.
    Rueckert, Daniel
    [J]. NEUROIMAGE, 2017, 162 : 226 - 248
  • [3] Longitudinal Parcellation of the Infant Cortex Using Multi-modal Connectome Harmonics
    Taylor, Hoyt Patrick
    Ahmad, Sahar
    Wu, Ye
    Huynh, Khoi Minh
    Zhou, Zhen
    Wu, Zhengwang
    Lin, Weili
    Wang, Li
    Li, Gang
    Zhang, Han
    Yap, Pew-Thian
    [J]. COMPUTATIONAL DIFFUSION MRI, 2021, : 251 - 261
  • [4] Joint Multi-modal Parcellation of the Human Striatum:Functions and Clinical Relevance
    Xiaojin Liu
    Simon B.Eickhoff
    Felix Hoffstaedter
    Sarah Genon
    Svenja Caspers
    Kathrin Reetz
    Imis Dogan
    Claudia R.Eickhoff
    Ji Chen
    Julian Caspers
    Niels Reuter
    Christian Mathys
    André Aleman
    Renaud Jardri
    Valentin Riedl
    Iris E.Sommer
    Kaustubh R.Patil
    [J]. Neuroscience Bulletin, 2020, 36 (10) : 1123 - 1136
  • [5] Joint Multi-modal Parcellation of the Human Striatum: Functions and Clinical Relevance
    Xiaojin Liu
    Simon B. Eickhoff
    Felix Hoffstaedter
    Sarah Genon
    Svenja Caspers
    Kathrin Reetz
    Imis Dogan
    Claudia R. Eickhoff
    Ji Chen
    Julian Caspers
    Niels Reuter
    Christian Mathys
    André Aleman
    Renaud Jardri
    Valentin Riedl
    Iris E. Sommer
    Kaustubh R. Patil
    [J]. Neuroscience Bulletin, 2020, 36 : 1123 - 1136
  • [6] Joint Multi-modal Parcellation of the Human Striatum: Functions and Clinical Relevance
    Liu, Xiaojin
    Eickhoff, Simon B.
    Hoffstaedter, Felix
    Genon, Sarah
    Caspers, Svenja
    Reetz, Kathrin
    Dogan, Imis
    Eickhoff, Claudia R.
    Chen, Ji
    Caspers, Julian
    Reuter, Niels
    Mathys, Christian
    Aleman, Andre
    Jardri, Renaud
    Riedl, Valentin
    Sommer, Iris E.
    Patil, Kaustubh R.
    [J]. NEUROSCIENCE BULLETIN, 2020, 36 (10) : 1123 - 1136
  • [7] Multi-modal multi-resolution atlas of the human neonatal cerebral cortex based on microstructural similarity
    Li, Mingyang
    Xu, Xinyi
    Cao, Zuozhen
    Chen, Ruike
    Zhao, Ruoke
    Zhao, Zhiyong
    Dang, Xixi
    Oishi, Kenichi
    Wu, Dan
    [J]. NEUROIMAGE, 2023, 272
  • [8] Multi-modal measurement of the visual cortex
    Amano, Kaoru
    Takemura, Hiromasa
    [J]. I-PERCEPTION, 2014, 5 (04): : 408 - 408
  • [9] Automatic Method for Thalamus Parcellation Using Multi-modal Feature Classification
    Stough, Joshua V.
    Glaister, Jeffrey
    Ye, Chuyang
    Ying, Sarah H.
    Prince, Jerry L.
    Carass, Aaron
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT III, 2014, 8675 : 169 - 176
  • [10] Transcriptome-based human cerebral cortex parcellation
    Murgas, Matej
    Gryglewski, Gregor
    Kloebl, Manfred
    Reed, Murray B.
    Lanzenberger, Rupert
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2021, 41 (1_SUPPL): : 206 - 207