A multi-subject, multi-modal human neuroimaging dataset

被引:0
|
作者
Daniel G Wakeman
Richard N Henson
机构
[1] Athinoula A. Martinos Center for Biomedical Imaging,
[2] MRC Cognition & Brain Sciences Unit,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We describe data acquired with multiple functional and structural neuroimaging modalities on the same nineteen healthy volunteers. The functional data include Electroencephalography (EEG), Magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) data, recorded while the volunteers performed multiple runs of hundreds of trials of a simple perceptual task on pictures of familiar, unfamiliar and scrambled faces during two visits to the laboratory. The structural data include T1-weighted MPRAGE, Multi-Echo FLASH and Diffusion-weighted MR sequences. Though only from a small sample of volunteers, these data can be used to develop methods for integrating multiple modalities from multiple runs on multiple participants, with the aim of increasing the spatial and temporal resolution above that of any one modality alone. They can also be used to integrate measures of functional and structural connectivity, and as a benchmark dataset to compare results across the many neuroimaging analysis packages. The data are freely available from https://openfmri.org/.
引用
收藏
相关论文
共 50 条
  • [1] A multi-subject, multi-modal human neuroimaging dataset
    Wakeman, Daniel G.
    Henson, Richard N.
    [J]. SCIENTIFIC DATA, 2015, 2
  • [2] Multi-modal and multi-subject modular organization of human brain networks
    Puxeddu, Maria Grazia
    Faskowitz, Joshua
    Sporns, Olaf
    Astolfi, Laura
    Betzel, Richard F.
    [J]. NEUROIMAGE, 2022, 264
  • [3] Bayesian Vector Autoregressive Model for Multi-Subject Effective Connectivity Inference Using Multi-Modal Neuroimaging Data
    Chiang, Sharon
    Guindani, Michele
    Yeh, Hsiang J.
    Haneef, Zulfi
    Stern, John M.
    Vannucci, Marina
    [J]. HUMAN BRAIN MAPPING, 2017, 38 (03) : 1311 - 1332
  • [4] A New Multi-modal Dataset for Human Affect Analysis
    Wei, Haolin
    Monaghan, David S.
    O'Connor, Noel E.
    Scanlon, Patricia
    [J]. HUMAN BEHAVIOR UNDERSTANDING (HBU 2014), 2014, 8749 : 42 - 51
  • [5] A new multi-modal dataset for human affect analysis
    [J]. 1600, Springer Verlag (8749):
  • [6] Shared Independent Component Analysis for Multi-Subject Neuroimaging
    Richard, Hugo
    Ablin, Pierre
    Thirion, Bertrand
    Gramfort, Alexandre
    Hyvarinen, Aapo
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] MULTI-MODAL NEUROIMAGING OF NICOTINE DEPENDENCE
    Takahashi, H.
    [J]. ALCOHOL AND ALCOHOLISM, 2014, 49
  • [8] The Helix: A multi-modal tactile stimulator for human functional neuroimaging
    Ingehohn, John E.
    Dold, George R.
    Pfeffer, Lawerence E.
    Ide, David
    Goldstein, Seth R.
    Johnson, Kenneth O.
    Van Boven, Robert W.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2006, 155 (02) : 217 - 223
  • [9] The helix: A multi-modal tactile stimulator for human functional neuroimaging
    Ingeholm, J. E.
    Dold, G. R.
    Pfeffer, L. E.
    Goldstein, S. R.
    Johnson, K. . O.
    Ide, D.
    Van Boven, R. W.
    [J]. ANNALS OF NEUROLOGY, 2006, 60 (05) : 638 - 638
  • [10] Beyond Emotion: A Multi-Modal Dataset for Human Desire Understanding
    Jia, Ao
    He, Yu
    Zhang, Yazhou
    Uprety, Sagar
    Song, Dawei
    Lioma, Christina
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1512 - 1522