A Simple Chaotic Flow with a Continuously Adjustable Attractor Dimension

被引:36
|
作者
Munmuangsaen, Buncha [1 ]
Sprott, Julien Clinton [2 ]
Thio, Wesley Joo-Chen [3 ]
Buscarino, Arturo [4 ]
Fortuna, Luigi [4 ]
机构
[1] Fabrinet Co Ltd, Klongluang 12120, Patumthani, Thailand
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[3] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[4] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
来源
关键词
Chaos; dynamical system; differential equation; conservative system; low-dimensional chaos;
D O I
10.1142/S0218127415300360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes two simple three-dimensional autonomous chaotic flows whose attractor dimensions can be adjusted continuously from 2.0 to 3.0 by a single control parameter. Such a parameter provides a means to explore the route through limit cycles, period-doubling, dissipative chaos, and eventually conservative chaos. With an absolute-value nonlinearity and certain choices of parameters, the systems have a vast and smooth continual transition path from dissipative chaos to conservative chaos. One system is analyzed in detail by means of the largest Lyapunov exponent, Kaplan-Yorke dimension, bifurcations, coexisting attractors and eigenvalues of the Jacobian matrix. An electronic version of the system has been constructed and shown to perform in accordance with expectations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Visualizing the Template of a Chaotic Attractor
    Olszewski, Maya
    Meder, Jeff
    Kieffer, Emmanuel
    Bleuse, Raphael
    Rosalie, Martin
    Danoy, Gregoire
    Bouvry, Pascal
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2018, 2018, 11282 : 106 - 119
  • [42] Homoclinical structure of the chaotic attractor
    Akhmet, M. U.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) : 819 - 822
  • [43] The chaotic attractor of the sediment movement
    Chen, FS
    Xue, KX
    Cai, WK
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1998, 6 (02): : 191 - 196
  • [44] Chaotic attractor with varied parameters
    Alamodi, Abdulaziz O. A.
    Sun, Kehui
    Peng, Yuexi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (6-7): : 1095 - 1108
  • [45] Hopping probabilities in a chaotic attractor
    Etchegoin, P
    PHYSICA A, 2001, 301 (1-4): : 97 - 104
  • [46] Chaotic pendulum: The complete attractor
    DeSerio, R
    AMERICAN JOURNAL OF PHYSICS, 2003, 71 (03) : 250 - 257
  • [47] Chaotic attractor in the Kuramoto model
    Maistrenko, YL
    Popovych, OV
    Tass, PA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (11): : 3457 - 3466
  • [48] Attractor selection in chaotic dynamics
    Meucci, R
    Allaria, E
    Salvadori, F
    Arecchi, FT
    PHYSICAL REVIEW LETTERS, 2005, 95 (18)
  • [49] Chaotic attractor with varied parameters
    Abdulaziz O. A. Alamodi
    Kehui Sun
    Yuexi Peng
    The European Physical Journal Special Topics, 2020, 229 : 1095 - 1108
  • [50] A cell model of chaotic attractor
    Qiu, SS
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1033 - 1036