Visualizing the Template of a Chaotic Attractor

被引:3
|
作者
Olszewski, Maya [1 ]
Meder, Jeff [1 ]
Kieffer, Emmanuel [2 ]
Bleuse, Raphael [1 ]
Rosalie, Martin [2 ]
Danoy, Gregoire [1 ]
Bouvry, Pascal [1 ,2 ]
机构
[1] Univ Luxembourg, FSTC CSC ILIAS, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Univ Luxembourg, SnT, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
关键词
Chaotic attractor; Template; Linking matrix; Optimization; Visualization; PERIODIC-ORBITS; EQUATION;
D O I
10.1007/978-3-030-04414-5_8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Chaotic attractors are solutions of deterministic processes, of which the topology can be described by templates. We consider templates of chaotic attractors bounded by a genus-1 torus described by a linking matrix. This article introduces a novel and unique tool to validate a linking matrix, to optimize the compactness of the corresponding template and to draw this template. The article provides a detailed description of the different validation steps and the extraction of an order of crossings from the linking matrix leading to a template of minimal height. Finally, the drawing process of the template corresponding to the matrix is saved in a Scalable Vector Graphics (SVG) file.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 50 条
  • [1] Universality and scaling in chaotic attractor-to-chaotic attractor transitions
    Stynes, D
    Heffernan, DM
    CHAOS SOLITONS & FRACTALS, 2002, 13 (06) : 1195 - 1204
  • [2] Chaotic attractor of the image
    Yu, Wanbo
    Yu, Shuo
    INFORMATION TECHNOLOGY, 2015, : 161 - 164
  • [3] A novel chaotic attractor
    Liu, Chongxin
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1037 - 1045
  • [4] A new chaotic attractor
    Liu, CX
    Liu, T
    Liu, L
    Liu, K
    CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1031 - 1038
  • [5] A SUPERFAT CHAOTIC ATTRACTOR
    KUBE, MC
    ROSSLER, OE
    HUDSON, JL
    CHAOS SOLITONS & FRACTALS, 1993, 3 (02) : 141 - 148
  • [6] Diffusion on a chaotic attractor
    Glueck, M.
    Kolovsky, A.R.
    Korsch, H.J.
    Physica D: Nonlinear Phenomena, 1998, 116 (3-4): : 283 - 288
  • [7] What is a chaotic attractor?
    Robinson C.
    Qualitative Theory of Dynamical Systems, 2008, 7 (1) : 227 - 236
  • [8] Is the Henon attractor chaotic?
    Galias, Zbigniew
    Tucker, Warwick
    CHAOS, 2015, 25 (03)
  • [9] Chaotic polarization attractor
    Rachel Won
    Nature Photonics, 2014, 8 (5) : 350 - 350
  • [10] Diffusion on a chaotic attractor
    Gluck, M
    Kolovsky, AR
    Korsch, HJ
    PHYSICA D, 1998, 116 (3-4): : 283 - 288