Hopping probabilities in a chaotic attractor

被引:3
|
作者
Etchegoin, P [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
来源
PHYSICA A | 2001年 / 301卷 / 1-4期
关键词
nonlinear dynamics; nonlinear dynamical systems;
D O I
10.1016/S0378-4371(01)00376-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The residence time around different parts of a chaotic attractor is studied experimentally for nonlinear dynamical system with a double-scroll. It is shown that the dynamics of jumping from one scroll of the attractor to the other produces a distinct low-frequency peak in the otherwise featureless noise-like background produced by the chaotic dynamics. This peak can be interpreted as a distribution of residence times and follows a lognormal distribution. A few similarities with the phenomenon of stochastic resonances are also highlighted. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 104
页数:8
相关论文
共 50 条
  • [1] Chaotic attractor hopping yields logic operations
    Murali, K.
    Sinha, Sudeshna
    Kohar, Vivek
    Kia, Behnam
    Ditto, William L.
    PLOS ONE, 2018, 13 (12):
  • [2] Multistability, noise, and attractor hopping: The crucial role of chaotic saddles
    Kraut, S
    Feudel, U
    PHYSICAL REVIEW E, 2002, 66 (01):
  • [3] Universality and scaling in chaotic attractor-to-chaotic attractor transitions
    Stynes, D
    Heffernan, DM
    CHAOS SOLITONS & FRACTALS, 2002, 13 (06) : 1195 - 1204
  • [4] Chaotic attractor of the image
    Yu, Wanbo
    Yu, Shuo
    INFORMATION TECHNOLOGY, 2015, : 161 - 164
  • [5] A novel chaotic attractor
    Liu, Chongxin
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1037 - 1045
  • [6] A new chaotic attractor
    Liu, CX
    Liu, T
    Liu, L
    Liu, K
    CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1031 - 1038
  • [7] A SUPERFAT CHAOTIC ATTRACTOR
    KUBE, MC
    ROSSLER, OE
    HUDSON, JL
    CHAOS SOLITONS & FRACTALS, 1993, 3 (02) : 141 - 148
  • [8] Diffusion on a chaotic attractor
    Glueck, M.
    Kolovsky, A.R.
    Korsch, H.J.
    Physica D: Nonlinear Phenomena, 1998, 116 (3-4): : 283 - 288
  • [9] What is a chaotic attractor?
    Robinson C.
    Qualitative Theory of Dynamical Systems, 2008, 7 (1) : 227 - 236
  • [10] Is the Henon attractor chaotic?
    Galias, Zbigniew
    Tucker, Warwick
    CHAOS, 2015, 25 (03)