Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks

被引:4
|
作者
Hussain, Syed Aamer [1 ]
Tahir, Ali [1 ]
Khan, Junaid Aziz [1 ]
Salman, Ahmad [2 ]
机构
[1] Natl Univ Sci & Technol, Inst Geog Informat Syst, Sect H-12, Islamabad 44000, Pakistan
[2] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Sect H-12, Islamabad 44000, Pakistan
关键词
Hyperspectral data; Machine learning; Convolutional neural networks; RANDOM FOREST; ARCHITECTURES; FRAMEWORK; TEXT;
D O I
10.1007/s41064-019-00066-z
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The recent progress in geographical information systems, remote sensing (RS) and data analytics enables us to acquire and process large amount of Earth observation data. Convolutional neural networks (CNN) are being used frequently in classification of multi-dimensional images with high accuracy. In this paper, we test CNNs for the classification of hyperspectral RS data. Our proposed CNN is a multi-layered neural network architecture, which is tailored to classify objects based on pixel-wise spatial information using spectral bands of hyperspectral imagery (HSI). We use benchmark satellite imagery in four different HSI datasets for classification using the proposed architecture. Our results are compared with support vector machine (SVM) and extreme learning machine (ELM) algorithms, which are frequently used techniques of machine learning in RS data classification. Moreover, we also provide a comparison with the state-of-the-art CNN approaches, which have been used for HSI classification. Our results show improvements of up to 6% on average over SVM and ELM while up to 4% improvement is observed in comparison with two recently proposed CNN architectures for HSI classification accuracy. On the other hand, the processing time of our proposed CNN is also significantly lower.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [41] HyperConv: spatio-spectral classification of hyperspectral images with deep convolutional neural networks
    Ko, Seyoon
    Jun, Goo
    Won, Joong-Ho
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (05) : 859 - 872
  • [42] Human Classification in Aerial Images Using Convolutional Neural Networks
    Akshatha, K. R.
    Karunakar, A. K.
    Shenoy, B. Satish
    MACHINE LEARNING AND AUTONOMOUS SYSTEMS, 2022, 269 : 537 - 549
  • [43] Classification of Fashion Article Images using Convolutional Neural Networks
    Bhatnagar, Shobhit
    Ghosal, Deepanway
    Kolekar, Maheshkumar H.
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 357 - 362
  • [44] Classification of Human Metaspread Images Using Convolutional Neural Networks
    Arora, Tanvi
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (03)
  • [45] Classification of Photo and Sketch Images Using Convolutional Neural Networks
    Sasaki, Kazuma
    Yamakawa, Madoka
    Sekiguchi, Kana
    Ogata, Tetsuya
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 283 - 290
  • [46] Using convolutional neural networks for classification of malware represented as images
    Daniel Gibert
    Carles Mateu
    Jordi Planes
    Ramon Vicens
    Journal of Computer Virology and Hacking Techniques, 2019, 15 : 15 - 28
  • [47] Using convolutional neural networks for classification of malware represented as images
    Gibert, Daniel
    Mateu, Carles
    Planes, Jordi
    Vicens, Ramon
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2019, 15 (01) : 15 - 28
  • [48] Classification of Images of Childhood Pneumonia using Convolutional Neural Networks
    Saraiva, A. A.
    Fonseca Ferreira, N. M.
    de Sousa, Luciano Lopes
    Costa, Nator Junior C.
    Moura Sousa, Jose Vigno
    Santos, D. B. S.
    Valente, Antonio
    Soares, Salviano
    BIOIMAGING: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2, 2019, : 112 - 119
  • [49] Food Classification from Images Using Convolutional Neural Networks
    Attokaren, David J.
    Fernandes, Ian G.
    Sriram, A.
    Murthy, Y. V. Srinivasa
    Koolagudi, Shashidhar G.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2801 - 2806
  • [50] Detection of Anthocyanins in Potatoes Using Micro-Hyperspectral Images Based on Convolutional Neural Networks
    Wang, Fuxiang
    Li, Qiying
    Deng, Weigang
    Wang, Chunguang
    Han, Lei
    FOODS, 2024, 13 (13)