Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks

被引:4
|
作者
Hussain, Syed Aamer [1 ]
Tahir, Ali [1 ]
Khan, Junaid Aziz [1 ]
Salman, Ahmad [2 ]
机构
[1] Natl Univ Sci & Technol, Inst Geog Informat Syst, Sect H-12, Islamabad 44000, Pakistan
[2] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Sect H-12, Islamabad 44000, Pakistan
关键词
Hyperspectral data; Machine learning; Convolutional neural networks; RANDOM FOREST; ARCHITECTURES; FRAMEWORK; TEXT;
D O I
10.1007/s41064-019-00066-z
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The recent progress in geographical information systems, remote sensing (RS) and data analytics enables us to acquire and process large amount of Earth observation data. Convolutional neural networks (CNN) are being used frequently in classification of multi-dimensional images with high accuracy. In this paper, we test CNNs for the classification of hyperspectral RS data. Our proposed CNN is a multi-layered neural network architecture, which is tailored to classify objects based on pixel-wise spatial information using spectral bands of hyperspectral imagery (HSI). We use benchmark satellite imagery in four different HSI datasets for classification using the proposed architecture. Our results are compared with support vector machine (SVM) and extreme learning machine (ELM) algorithms, which are frequently used techniques of machine learning in RS data classification. Moreover, we also provide a comparison with the state-of-the-art CNN approaches, which have been used for HSI classification. Our results show improvements of up to 6% on average over SVM and ELM while up to 4% improvement is observed in comparison with two recently proposed CNN architectures for HSI classification accuracy. On the other hand, the processing time of our proposed CNN is also significantly lower.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [31] An Evaluation of Convolutional Neural Networks for Lithological Mapping Based on Hyperspectral Images
    Wang, Ziye
    Zuo, Renguang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6414 - 6425
  • [32] Hierarchical Clustering Model for Pixel-Based Classification of Document Images
    Vieux, Remi
    Domenger, Jean-Philippe
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 290 - 293
  • [33] Mineral Classification using Convolutional Neural Networks and SWIR Hyperspectral Imaging
    Cifuentes, Jose I.
    Arias, Luis E.
    Pirard, Eric
    Castillo, Fernando
    AI AND OPTICAL DATA SCIENCES V, 2024, 12903
  • [34] Cell Classification Using Convolutional Neural Networks in Medical Hyperspectral Imagery
    Li, Xiang
    Li, Wei
    Xu, Xiaodong
    Hu, Wei
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 501 - 504
  • [35] Patch and Pixel Based Brain Tumor Segmentation in MRI images using Convolutional Neural Networks
    Derikvand, Fatemeh
    Khotanlou, Hassan
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [36] Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review
    Bera, Somenath
    Shrivastava, Vimal K.
    Satapathy, Suresh Chandra
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 133 (02): : 219 - 250
  • [37] Hyperspectral classification based on spectral-spatial convolutional neural networks
    Chen, Congcong
    Jiang, Feng
    Yang, Chifu
    Rho, Seungmin
    Shen, Weizheng
    Liu, Shaohui
    Liu, Zhiguo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 68 : 165 - 171
  • [38] Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review
    Bera, Somenath
    Shrivastava, Vimal K.
    Satapathy, Suresh Chandra
    CMES - Computer Modeling in Engineering and Sciences, 2022, 133 (02): : 219 - 250
  • [39] Defect classification in shearography images using convolutional neural networks
    Frohlich, Herberth Birck
    Fantin, Analucia Vieira
    Fonseca de Oliveira, Bernardo Cassimiro
    Willemann, Daniel Pedro
    Iervolino, Lucas Arrigoni
    Benedet, Mauro Eduardo
    Goncalves, Armando Albertazzi, Jr.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [40] Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks
    Miguel Lopez-Rubio, Jose
    Molina-Cabello, Miguel A.
    Ramos-Jimenez, Gonzalo
    Lopez-Rubio, Ezequiel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 432 - 442