Classification of Images of Childhood Pneumonia using Convolutional Neural Networks

被引:47
|
作者
Saraiva, A. A. [1 ]
Fonseca Ferreira, N. M. [2 ,3 ,4 ]
de Sousa, Luciano Lopes [5 ]
Costa, Nator Junior C. [5 ]
Moura Sousa, Jose Vigno [5 ,6 ]
Santos, D. B. S. [5 ]
Valente, Antonio [2 ,7 ,8 ]
Soares, Salviano [7 ,8 ]
机构
[1] UTAD Univ, Coimbra, Portugal
[2] INESC TEC Technol & Sci, Campus FEUP,Rua Dr Roberto Frias 378, P-4200465 Porto, Portugal
[3] Polytech Inst Porto, Inst Engn, Knowledge Engn & Decis Support Res Ctr GECAD, Porto, Portugal
[4] Polytech Inst, Inst Engn Coimbra, Dept Elect Engn, Rua Pedro Nunes, P-3031601 Coimbra, Portugal
[5] Univ Estadual Piaui, Piaui, Brazil
[6] Univ Brazil, Sao Paulo, Brazil
[7] Univ Tras Os Montes & Alto Douro, IEETA UA, Vila Real, Portugal
[8] Univ Tras Os Montes & Alto Douro, Sch Sci & Technol, Vila Real, Portugal
关键词
Pneumonia; X-Ray; CNN; K-Fold;
D O I
10.5220/0007404301120119
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we describe a comparative classification of Pneumonia using Convolution Neural Network. The database used was the dataset Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification made available by (Kermany, 2018) with a total of 5863 images, with 2 classes: normal and pneumonia. To evaluate the generalization capacity of the models, cross-validation of k-fold was used. The classification models proved to be efficient compared to the work of (Kermany et al., 2018) which obtained 92.8 % and the present work had an average accuracy of 95.30 %.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 50 条
  • [1] Defect classification in shearography images using convolutional neural networks
    Frohlich, Herberth Birck
    Fantin, Analucia Vieira
    Fonseca de Oliveira, Bernardo Cassimiro
    Willemann, Daniel Pedro
    Iervolino, Lucas Arrigoni
    Benedet, Mauro Eduardo
    Goncalves, Armando Albertazzi, Jr.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [2] Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks
    Miguel Lopez-Rubio, Jose
    Molina-Cabello, Miguel A.
    Ramos-Jimenez, Gonzalo
    Lopez-Rubio, Ezequiel
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 432 - 442
  • [3] Human Classification in Aerial Images Using Convolutional Neural Networks
    Akshatha, K. R.
    Karunakar, A. K.
    Shenoy, B. Satish
    [J]. MACHINE LEARNING AND AUTONOMOUS SYSTEMS, 2022, 269 : 537 - 549
  • [4] Classification of Fashion Article Images using Convolutional Neural Networks
    Bhatnagar, Shobhit
    Ghosal, Deepanway
    Kolekar, Maheshkumar H.
    [J]. 2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 357 - 362
  • [5] Classification of Human Metaspread Images Using Convolutional Neural Networks
    Arora, Tanvi
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (03)
  • [6] Classification of Photo and Sketch Images Using Convolutional Neural Networks
    Sasaki, Kazuma
    Yamakawa, Madoka
    Sekiguchi, Kana
    Ogata, Tetsuya
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 283 - 290
  • [7] Using convolutional neural networks for classification of malware represented as images
    Daniel Gibert
    Carles Mateu
    Jordi Planes
    Ramon Vicens
    [J]. Journal of Computer Virology and Hacking Techniques, 2019, 15 : 15 - 28
  • [8] Using convolutional neural networks for classification of malware represented as images
    Gibert, Daniel
    Mateu, Carles
    Planes, Jordi
    Vicens, Ramon
    [J]. JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2019, 15 (01) : 15 - 28
  • [9] Food Classification from Images Using Convolutional Neural Networks
    Attokaren, David J.
    Fernandes, Ian G.
    Sriram, A.
    Murthy, Y. V. Srinivasa
    Koolagudi, Shashidhar G.
    [J]. TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2801 - 2806
  • [10] Pneumonia Detection from Radiography Images using Convolutional Neural Networks
    Talo, Muhammed
    [J]. 2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,