Classification of Images of Childhood Pneumonia using Convolutional Neural Networks

被引:47
|
作者
Saraiva, A. A. [1 ]
Fonseca Ferreira, N. M. [2 ,3 ,4 ]
de Sousa, Luciano Lopes [5 ]
Costa, Nator Junior C. [5 ]
Moura Sousa, Jose Vigno [5 ,6 ]
Santos, D. B. S. [5 ]
Valente, Antonio [2 ,7 ,8 ]
Soares, Salviano [7 ,8 ]
机构
[1] UTAD Univ, Coimbra, Portugal
[2] INESC TEC Technol & Sci, Campus FEUP,Rua Dr Roberto Frias 378, P-4200465 Porto, Portugal
[3] Polytech Inst Porto, Inst Engn, Knowledge Engn & Decis Support Res Ctr GECAD, Porto, Portugal
[4] Polytech Inst, Inst Engn Coimbra, Dept Elect Engn, Rua Pedro Nunes, P-3031601 Coimbra, Portugal
[5] Univ Estadual Piaui, Piaui, Brazil
[6] Univ Brazil, Sao Paulo, Brazil
[7] Univ Tras Os Montes & Alto Douro, IEETA UA, Vila Real, Portugal
[8] Univ Tras Os Montes & Alto Douro, Sch Sci & Technol, Vila Real, Portugal
关键词
Pneumonia; X-Ray; CNN; K-Fold;
D O I
10.5220/0007404301120119
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we describe a comparative classification of Pneumonia using Convolution Neural Network. The database used was the dataset Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification made available by (Kermany, 2018) with a total of 5863 images, with 2 classes: normal and pneumonia. To evaluate the generalization capacity of the models, cross-validation of k-fold was used. The classification models proved to be efficient compared to the work of (Kermany et al., 2018) which obtained 92.8 % and the present work had an average accuracy of 95.30 %.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 50 条
  • [41] Automatic classification of images with beach linear perspective using convolutional neural networks
    Santos-Romero, Martin
    Arellano-Verdejo, Javier
    Lazcano-Hernandez, Hugo E.
    Damian Reyes, Pedro
    [J]. 2022 IEEE MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE (ENC), 2022,
  • [42] Images Based Classification for Warm Cloud Rainmaking using Convolutional Neural Networks
    Arthayakun, Sarawut
    Kamonsantiroj, Suwatchai
    Pipanmaekaporn, Luepol
    [J]. 2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2018, : 413 - 417
  • [43] Melanoma Classification from Dermoscopy Images Using Ensemble of Convolutional Neural Networks
    Raza, Rehan
    Zulfiqar, Fatima
    Tariq, Shehroz
    Anwar, Gull Bano
    Sargano, Allah Bux
    Habib, Zulfiqar
    [J]. MATHEMATICS, 2022, 10 (01)
  • [44] Classification of X-Ray Images of the Chest Using Convolutional Neural Networks
    Mochurad, Lesia
    Dereviannyi, Andrii
    Antoniv, Uliana
    [J]. IDDM 2021: INFORMATICS & DATA-DRIVEN MEDICINE: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE (IDDM 2021), 2021, 3038 : 269 - 282
  • [45] Ground Target Classification in Noisy SAR Images Using Convolutional Neural Networks
    Wang, Jun
    Zheng, Tong
    Lei, Peng
    Bai, Xiao
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4180 - 4192
  • [46] Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
    Hirotoshi Takiyama
    Tsuyoshi Ozawa
    Soichiro Ishihara
    Mitsuhiro Fujishiro
    Satoki Shichijo
    Shuhei Nomura
    Motoi Miura
    Tomohiro Tada
    [J]. Scientific Reports, 8
  • [47] Classification of Time-Series Images Using Deep Convolutional Neural Networks
    Hatami, Nima
    Gavet, Yann
    Debayle, Johan
    [J]. TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [48] Automatic classification of cells in microscopic fecal images using convolutional neural networks
    Du, Xiaohui
    Liu, Lin
    Wang, Xiangzhou
    Ni, Guangming
    Zhang, Jing
    Hao, Ruqian
    Liu, Juanxiu
    Liu, Yong
    [J]. BIOSCIENCE REPORTS, 2019, 39
  • [49] Modality classification for medical images using multiple deep convolutional neural networks
    School of Computer Science and Technology, Dalian University of Technology, Dalian, China
    不详
    不详
    不详
    [J]. J. Comput. Inf. Syst, 15 (5403-5413):
  • [50] Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
    Saito, Hiroaki
    Tanimoto, Tetsuya
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Hirasawa, Dai
    Matsuda, Tomoki
    Endo, Yuma
    Tada, Tomohiro
    [J]. GASTROENTEROLOGY REPORT, 2021, 9 (03): : 226 - 233