Symplectic numerical methods in dynamics of nonlinear waves

被引:2
|
作者
Shagalov, AG [1 ]
机构
[1] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia
来源
关键词
symplectic integrators; integrable equations; nonlinear Schrodinger equation; integrals of motion; modulational instability; stochastic; higher-order dispersion; optical solitons;
D O I
10.1142/S0129183199000760
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The symplectic integrator of the Gauss-Legendre type is tested on the nonlinear Schrodinger equation. Preservation of high integrals (up to 10 or more) and quasiperiodic motion have been detected for dynamics on both stable soliton and homoclinic manifolds, which indicate applicability of symplectic integrators for adequate simulation of integrable equation. The tested integrator is applied to the problem of long-time stability of the solitons in higher-derivative nonlinear Schrodinger equation. The slow logarithmic-type depletion of the soliton amplitude with time has been detected.
引用
收藏
页码:967 / 980
页数:14
相关论文
共 50 条
  • [1] On the numerical modelling of the dynamics of weakly nonlinear waves with dispersion
    Fedotova, ZI
    Pashkova, VY
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1995, 10 (05) : 407 - 424
  • [2] Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation
    Chen, JB
    Qin, MZ
    Tang, YF
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1095 - 1106
  • [3] Symplectic methods for the nonlinear Schrodinger equation
    Tang, YF
    Vazquez, L
    Zhang, F
    PerezGarcia, VM
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (05) : 73 - 83
  • [4] NUMERICAL STUDY ON NONLINEAR DYNAMICS OF CHARGE-DENSITY-WAVES
    MATSUKAWA, H
    TAKAYAMA, H
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1987, 26 : 601 - 602
  • [5] SYMPLECTIC METHODS FOR THE NONLINEAR SCHRODINGER-EQUATION
    HERBST, BM
    VARADI, F
    ABLOWITZ, MJ
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 353 - 369
  • [6] Symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    Simos, T. E.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2007, 38 (03) : 526 - 532
  • [7] SYMPLECTIC NUMERICAL-METHODS FOR HAMILTONIAN PROBLEMS
    SANZSERNA, JM
    CALVO, MP
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1993, 4 (02): : 385 - 392
  • [8] Explicit Symplectic Methods for the Nonlinear Schrodinger Equation
    Guan, Hua
    Jiao, Yandong
    Liu, Ju
    Tang, Yifa
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (03) : 639 - 654
  • [9] AN INVESTIGATION OF PARALLEL NUMERICAL-INTEGRATION METHODS FOR NONLINEAR DYNAMICS
    OU, R
    FULTON, RE
    [J]. COMPUTERS & STRUCTURES, 1988, 30 (1-2) : 403 - 409
  • [10] NUMERICAL AND ANALYTICAL METHODS IN THE NONLINEAR DYNAMICS OF A CONFINED VOLUME OF LIQUID
    LUKOVSKII, IA
    LIMARCHENKO, OS
    PILKEVICH, AM
    [J]. SOVIET APPLIED MECHANICS, 1988, 24 (01): : 89 - 93