Symplectic methods for the numerical integration of the Schrodinger equation

被引:56
|
作者
Monovasilis, Th. [1 ]
Simos, T. E. [1 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, Lab Computat Sci, GR-22100 Tripolis, Greece
关键词
Schrodinger equation; symplectic integration; eigenvalue problem;
D O I
10.1016/j.commatsci.2005.09.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present explicit method for the numerical solution of the Schrodinger equation. The Schrodinger equation is first transformed into a Hamiltonian canonical equation and then we developed several methods up to the eighth order. We also construct new third and fourth order methods. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:526 / 532
页数:7
相关论文
共 50 条
  • [1] Exponentially fitted symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, T
    Kalogiratou, Z
    Simos, TE
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) : 263 - 270
  • [2] Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (03) : 257 - 267
  • [3] Phase fitted symplectic partitioned Runge-Kutta methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (07) : 1736 - 1746
  • [4] Exponential-fitting symplectic methods for the numerical solution of the Schrodinger equation
    Monovasilis, T
    Kalogiratou, Z
    Simos, TE
    [J]. ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 273 - 275
  • [5] Modified THDRK methods for the numerical integration of the Schrodinger equation
    Fang, Yonglei
    Yang, Yanping
    You, Xiong
    Ma, Lei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (10):
  • [6] Symplectic methods for the nonlinear Schrodinger equation
    Tang, YF
    Vazquez, L
    Zhang, F
    PerezGarcia, VM
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (05) : 73 - 83
  • [7] Symplectic integrators for the numerical solution of the Schrodinger equation
    Kalogiratou, Z
    Monovasilis, T
    Simos, TE
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) : 83 - 92
  • [8] Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation
    Chen, JB
    Qin, MZ
    Tang, YF
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1095 - 1106
  • [9] SYMPLECTIC METHODS FOR THE NONLINEAR SCHRODINGER-EQUATION
    HERBST, BM
    VARADI, F
    ABLOWITZ, MJ
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 353 - 369
  • [10] Explicit Symplectic Methods for the Nonlinear Schrodinger Equation
    Guan, Hua
    Jiao, Yandong
    Liu, Ju
    Tang, Yifa
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (03) : 639 - 654