Symplectic numerical methods in dynamics of nonlinear waves

被引:2
|
作者
Shagalov, AG [1 ]
机构
[1] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia
来源
关键词
symplectic integrators; integrable equations; nonlinear Schrodinger equation; integrals of motion; modulational instability; stochastic; higher-order dispersion; optical solitons;
D O I
10.1142/S0129183199000760
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The symplectic integrator of the Gauss-Legendre type is tested on the nonlinear Schrodinger equation. Preservation of high integrals (up to 10 or more) and quasiperiodic motion have been detected for dynamics on both stable soliton and homoclinic manifolds, which indicate applicability of symplectic integrators for adequate simulation of integrable equation. The tested integrator is applied to the problem of long-time stability of the solitons in higher-derivative nonlinear Schrodinger equation. The slow logarithmic-type depletion of the soliton amplitude with time has been detected.
引用
收藏
页码:967 / 980
页数:14
相关论文
共 50 条
  • [31] NUMERICAL INVESTIGATIONS OF NONLINEAR ELECTROSTATIC WAVES
    CHING, H
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 991 - 992
  • [32] Meshless symplectic and multi-symplectic local RBF collocation methods for nonlinear Schrodinger equation
    Zhang, Shengliang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 450
  • [33] Stochastic symplectic and multi-symplectic methods for nonlinear Schrodinger equation with white noise dispersion
    Cui, Jianbo
    Hong, Jialin
    Liu, Zhihui
    Zhou, Weien
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 342 : 267 - 285
  • [34] STABILITY AND DYNAMICS OF NUMERICAL-METHODS FOR NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS
    ISERLES, A
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) : 1 - 30
  • [35] Dynamics of Geometrically Nonlinear Rods: II. Numerical Methods and Computational Examples
    H. Weiss
    [J]. Nonlinear Dynamics, 2002, 30 : 383 - 415
  • [36] Numerical integration of Hamiltonian problems by G-symplectic methods
    Raffaele D’Ambrosio
    Giuseppe De Martino
    Beatrice Paternoster
    [J]. Advances in Computational Mathematics, 2014, 40 : 553 - 575
  • [37] Numerical integration of Hamiltonian problems by G-symplectic methods
    D'Ambrosio, Raffaele
    De Martino, Giuseppe
    Paternoster, Beatrice
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 553 - 575
  • [38] The application of symplectic geometry on nonlinear dynamics analysis of the experimental data
    Lei, M
    Wang, ZH
    Feng, ZJ
    [J]. DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 1137 - 1140
  • [39] Symplectic Effective Order Numerical Methods for Separable Hamiltonian Systems
    Ahmad, Junaid
    Habib, Yousaf
    Rehman, Shafiq ur
    Arif, Azqa
    Shafiq, Saba
    Younas, Muhammad
    [J]. SYMMETRY-BASEL, 2019, 11 (02):
  • [40] Exponentially fitted symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, T
    Kalogiratou, Z
    Simos, TE
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) : 263 - 270