Symplectic numerical methods in dynamics of nonlinear waves

被引:2
|
作者
Shagalov, AG [1 ]
机构
[1] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia
来源
关键词
symplectic integrators; integrable equations; nonlinear Schrodinger equation; integrals of motion; modulational instability; stochastic; higher-order dispersion; optical solitons;
D O I
10.1142/S0129183199000760
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The symplectic integrator of the Gauss-Legendre type is tested on the nonlinear Schrodinger equation. Preservation of high integrals (up to 10 or more) and quasiperiodic motion have been detected for dynamics on both stable soliton and homoclinic manifolds, which indicate applicability of symplectic integrators for adequate simulation of integrable equation. The tested integrator is applied to the problem of long-time stability of the solitons in higher-derivative nonlinear Schrodinger equation. The slow logarithmic-type depletion of the soliton amplitude with time has been detected.
引用
收藏
页码:967 / 980
页数:14
相关论文
共 50 条
  • [41] Symplectic Methods for the Numerical Solution of the Radial Shrödinger Equation
    Kostas Tselios
    T.E. Simos
    [J]. Journal of Mathematical Chemistry, 2003, 34 : 83 - 94
  • [42] Numerical methods for nonlinear equations
    Kelley, C. T.
    [J]. ACTA NUMERICA, 2018, 27 : 207 - 287
  • [43] Variational methods and nonlinear quasigeostrophic waves
    Duan, JQ
    Holm, DD
    Li, KT
    [J]. PHYSICS OF FLUIDS, 1999, 11 (04) : 875 - 879
  • [44] Nonlinear Fourier Methods for Ocean Waves
    Osborne, Alfred R.
    [J]. IUTAM SYMPOSIUM ON WIND WAVES, 2018, 26 : 112 - 123
  • [45] Control methods for localization of nonlinear waves
    Porubov, Alexey
    Andrievsky, Boris
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2088):
  • [46] PERTURBATION METHODS AND NONLINEAR HYPERBOLIC WAVES
    SHIVAMOGGI, BK
    [J]. JOURNAL OF SOUND AND VIBRATION, 1978, 60 (01) : 145 - 145
  • [47] PERTURBATION METHODS AND NONLINEAR HYPERBOLIC WAVES
    NAYFEH, AH
    [J]. JOURNAL OF SOUND AND VIBRATION, 1977, 54 (04) : 605 - 609
  • [48] NONLINEAR DYNAMICS OF SPIN-WAVES
    JEFFRIES, CD
    BRYANT, PH
    NAKAMURA, K
    [J]. JOURNAL OF APPLIED PHYSICS, 1988, 64 (10) : 5382 - 5385
  • [49] NONLINEAR DYNAMICS OF 2 UNSTABLE WAVES
    KARAVAYEV, GF
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1990, 33 (04): : 1 - 8
  • [50] Nonlinear dynamics of cylindrical plasma waves
    Karimov, AR
    Scheglov, VA
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2005, 26 (04) : 277 - 282