GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS

被引:7
|
作者
Detcherry, Renaud [1 ]
Kalfagianni, Efstratia [2 ]
机构
[1] Inst Math Bourgogne, UFR Sci & Tech, 9 Ave Alain Savary,BP 47870, F-21078 Dijon, France
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
VOLUME; REPRESENTATIONS; POLYNOMIALS;
D O I
10.24033/asens.2449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a relation between the "large r" asymptotics of the Turaev-Viro invariants T V-r and the Gromov norm of 3-manifolds. We show that for any orientable, compact 3-manifold M, with (possibly empty) toroidal boundary, log vertical bar T V-r(M)vertical bar is bounded above by Cr parallel to M parallel to for some universal constant C: We obtain topological criteria for the growth to be exponential; that is log vertical bar T V-r(M)vertical bar >= Br, for some B > 0, and construct infinite families of hyperbolic 3-manifolds whose Turaev-Viro invariants grow exponentially. These constructions are essential for related work of the authors which makes progress on a conjecture of Andersen, Masbaum and Ueno. We also show that, like the Gromov norm, the values of the invariants T V-r do not increase under Dehn filling. Finally we give constructions of 3-manifolds, both with zero and non-zero Gromov norm, for which the Turaev-Viro invariants determine the Gromov norm.
引用
收藏
页码:1363 / 1391
页数:29
相关论文
共 50 条
  • [41] BTZ Black Hole Entropy and the Turaev-Viro Model
    Geiller, Marc
    Noui, Karim
    ANNALES HENRI POINCARE, 2015, 16 (02): : 609 - 640
  • [42] Towards the Turaev-Viro amplitudes from a Hamiltonian constraint
    Bonzom, Valentin
    Dupuis, Maite
    Girelli, Florian
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [43] SPIN NETWORKS, TURAEV-VIRO THEORY AND THE LOOP REPRESENTATION
    FOXON, TJ
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (04) : 951 - 964
  • [44] Periods, the meromorphic 3D-index and the Turaev-Viro invariant
    Garoufalidis, Stavros
    Wheeler, Campbell
    arXiv, 2022,
  • [45] Observables in the Turaev-Viro and Crane-Yetter models
    Barrett, John W.
    Martins, Joao Faria
    Garcia-Islas, J. Manuel
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [46] Algorithms and complexity for Turaev–Viro invariants
    Burton B.A.
    Maria C.
    Spreer J.
    Journal of Applied and Computational Topology, 2018, 2 (1-2) : 33 - 53
  • [47] EXAMPLES OF DIFFERENT 3-MANIFOLDS WITH THE SAME INVARIANTS OF WITTEN AND RESHETIKHIN-TURAEV
    KANIABARTOSZYNSKA, J
    TOPOLOGY, 1993, 32 (01) : 47 - 54
  • [48] A reciprocity formula from abelian BF and Turaev-Viro theories
    Mathieu, P.
    Thuillier, F.
    NUCLEAR PHYSICS B, 2016, 912 : 327 - 353
  • [49] ASYMPTOTIC EXPANSIONS OF WITTEN-RESHETIKHIN-TURAEV INVARIANTS FOR SOME SIMPLE 3-MANIFOLDS
    LAWRENCE, RJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6106 - 6129
  • [50] Reshetikhin-Turaev invariants of Seifert 3-manifolds for classical simple Lie algebras
    Hansen, SK
    Takata, T
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (05) : 617 - 668