GROMOV NORM AND TURAEV-VIRO INVARIANTS OF 3-MANIFOLDS

被引:7
|
作者
Detcherry, Renaud [1 ]
Kalfagianni, Efstratia [2 ]
机构
[1] Inst Math Bourgogne, UFR Sci & Tech, 9 Ave Alain Savary,BP 47870, F-21078 Dijon, France
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
VOLUME; REPRESENTATIONS; POLYNOMIALS;
D O I
10.24033/asens.2449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a relation between the "large r" asymptotics of the Turaev-Viro invariants T V-r and the Gromov norm of 3-manifolds. We show that for any orientable, compact 3-manifold M, with (possibly empty) toroidal boundary, log vertical bar T V-r(M)vertical bar is bounded above by Cr parallel to M parallel to for some universal constant C: We obtain topological criteria for the growth to be exponential; that is log vertical bar T V-r(M)vertical bar >= Br, for some B > 0, and construct infinite families of hyperbolic 3-manifolds whose Turaev-Viro invariants grow exponentially. These constructions are essential for related work of the authors which makes progress on a conjecture of Andersen, Masbaum and Ueno. We also show that, like the Gromov norm, the values of the invariants T V-r do not increase under Dehn filling. Finally we give constructions of 3-manifolds, both with zero and non-zero Gromov norm, for which the Turaev-Viro invariants determine the Gromov norm.
引用
收藏
页码:1363 / 1391
页数:29
相关论文
共 50 条
  • [31] Quantum computation with Turaev-Viro codes
    Koenig, Robert
    Kuperberg, Greg
    Reichardt, Ben W.
    ANNALS OF PHYSICS, 2010, 325 (12) : 2707 - 2749
  • [32] Abelian BF theory and Turaev-Viro invariant
    Mathieu, P.
    Thuillier, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [33] 3-DIMENSIONAL GRAVITY AND THE TURAEV-VIRO INVARIANT
    MIZOGUCHI, S
    TADA, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 207 - 227
  • [34] 3-DIMENSIONAL GRAVITY FROM THE TURAEV-VIRO INVARIANT
    MIZOGUCHI, S
    TADA, T
    PHYSICAL REVIEW LETTERS, 1992, 68 (12) : 1795 - 1798
  • [35] (2+1)-Dimensional TQFT Model for Colored Turaev-Viro Invariants
    Koda, Yuya
    Taniguchi, Taiji
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (01) : 218 - 242
  • [36] Asymptotic behavior of the colored Jones polynomials and Turaev-Viro invariants of the figure eight knot
    Wong, Ka Ho
    Au, Thomas Kwok-Keung
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (01): : 1 - 53
  • [37] On the Turaev-Viro endomorphism and the colored Jones polynomial
    Cai, Xuanting
    Gilmer, Patrick M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (01): : 375 - 408
  • [38] Witten-Reshetikhin-Turaev invariants of 3-manifolds as holomorphic functions
    Lawrence, RJ
    GEOMETRY AND PHYSICS, 1997, 184 : 363 - 377
  • [39] A TQFT of Turaev-Viro Type on Shaped Triangulations
    Kashaev, Rinat
    Luo, Feng
    Vartanov, Grigory
    ANNALES HENRI POINCARE, 2016, 17 (05): : 1109 - 1143
  • [40] Amplitudes for topology change in Turaev-Viro theory
    Ionicioiu, R
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (07) : 1885 - 1894