Non-integrability in non-relativistic theories

被引:14
|
作者
Giataganas, Dimitrios [1 ,2 ,3 ]
Sfetsos, Konstadinos [1 ,4 ]
机构
[1] Univ Athens, Fac Phys, Dept Nucl & Particle Phys, Athens 15784, Greece
[2] Univ Witwatersrand, Sch Phys, Natl Inst Theoret Phys, ZA-2050 Johannesburg, South Africa
[3] Univ Witwatersrand, Ctr Theoret Phys, ZA-2050 Johannesburg, South Africa
[4] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
来源
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; Integrable Field Theories; INTEGRABILITY; STRINGS; CHAOS;
D O I
10.1007/JHEP06(2014)018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Generic non-relativistic theories giving rise to non-integrable string solutions are classified. Our analysis boils down to a simple algebraic condition for the scaling parameters of the metric. Particular cases are the Lifshitz and the anisotropic Lifshitz spacetimes, for which we find that for trivial dilaton dependence the only integrable physical theory is that for z = 1. For the hyperscaling violation theories we conclude that the vast majority of theories are non-integrable, while only for a small class of physical theories, where the Fermi surfaces belong to, integrability is not excluded. Schrodinger theories are also analyzed and a necessary condition for non-integrability is found. Our analysis is also applied to cases where the exponential of the dilaton is a monomial of the holographic coordinate.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] INTEGRABILITY AND NON-INTEGRABILITY IN HAMILTONIAN-MECHANICS
    KOZLOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (01) : 1 - 76
  • [22] Integrability and Non-integrability of Hamiltonian Normal Forms
    Ferdinand Verhulst
    Acta Applicandae Mathematicae, 2015, 137 : 253 - 272
  • [23] Non-integrability of cylindric billiards
    Simányi, N
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 303 - 306
  • [24] Non-integrability by discrete quadratures
    Casale, Guy
    Roques, Julien
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 87 - 112
  • [25] On marginal deformations and non-integrability
    Dimitrios Giataganas
    Leopoldo A. Pando Zayas
    Konstantinos Zoubos
    Journal of High Energy Physics, 2014
  • [26] Non-integrability of ABC flow
    Maciejewski, A
    Przybylska, M
    PHYSICS LETTERS A, 2002, 303 (04) : 265 - 272
  • [27] On marginal deformations and non-integrability
    Giataganas, Dimitrios
    Zayas, Leopoldo A. Pando
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [28] NON-INTEGRABILITY OF THE SUSLOV PROBLEM
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 73 - 80
  • [29] Non-integrability of the Karabut system
    Christov, Ognyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 91 - 97
  • [30] Integrability and Non-integrability of Hamiltonian Normal Forms
    Verhulst, Ferdinand
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 253 - 272