Traveling wave solutions of harmonic heat flow

被引:6
|
作者
Bertsch, M.
Muratov, C. B.
Primi, I.
机构
[1] CNR, Ist Appl Calcolo Mauro Picone, I-00161 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[4] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
harmonic map; director field; traveling wave; singularity; calculus of variations; bistable potential;
D O I
10.1007/s00526-006-0016-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a traveling wave solution of the equation u(t) = Delta u + vertical bar del u vertical bar(2)u in an infinitely long cylinder of radius R, which connects two locally stable and axially symmetric steady states at x(3) = +/-infinity. Here a is a director field with values in S-2 subset of R-3: vertical bar u vertical bar = 1. The traveling wave has a singular point on the cylinder axis. Letting R -> infinity we obtain a traveling wave defined in all space.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [41] Filter Helix for Harmonic Suppression in Traveling Wave Tubes
    Gehrmann, Elke
    Birtel, Philip
    Duerr, Wolfgang
    Jacob, Arne F.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) : 1859 - 1864
  • [42] HIGH SPACE HARMONIC PERTURBATIONS IN TRAVELING WAVE TUBES
    UHM, HS
    CHOE, JY
    KIM, CM
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1983, 4 (03): : 361 - 374
  • [43] Theory of the harmonic multiplying gyrotron traveling wave amplifier
    Chu, KR
    Guo, H
    Granatstein, VL
    PHYSICAL REVIEW LETTERS, 1997, 78 (24) : 4661 - 4664
  • [44] Traveling wave solutions describing the foam flow in porous media for low surfactant concentration
    Rosmery Q. Zavala
    Luis F. Lozano
    Grigori Chapiro
    Computational Geosciences, 2024, 28 : 323 - 340
  • [45] Traveling wave solutions describing the foam flow in porous media for low surfactant concentration
    Zavala, Rosmery Q.
    Lozano, Luis F.
    Chapiro, Grigori
    COMPUTATIONAL GEOSCIENCES, 2024, 28 (02) : 323 - 340
  • [47] Traveling Wave Solutions of the Gardner Equation and Motion of Plane Curves Governed by the mKdV Flow
    Vassilev, V. M.
    Djondjorov, P. A.
    Hadzhilazova, M. Ts.
    Mladenov, I. M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [48] EXACT TRAVELING-WAVE SOLUTIONS FOR LINEAR AND NON-LINEAR HEAT TRANSFER EQUATIONS
    Gao, Feng
    Yang, Xiao-Jun
    Srivastava, Hari Mohan
    THERMAL SCIENCE, 2017, 21 (06): : 2307 - 2311
  • [49] Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer
    Khater, Mostafa M. A.
    Seadawy, Aly R.
    Lu, Dianchen
    RESULTS IN PHYSICS, 2018, 8 : 292 - 303