Traveling wave solutions of harmonic heat flow

被引:6
|
作者
Bertsch, M.
Muratov, C. B.
Primi, I.
机构
[1] CNR, Ist Appl Calcolo Mauro Picone, I-00161 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[4] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
harmonic map; director field; traveling wave; singularity; calculus of variations; bistable potential;
D O I
10.1007/s00526-006-0016-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a traveling wave solution of the equation u(t) = Delta u + vertical bar del u vertical bar(2)u in an infinitely long cylinder of radius R, which connects two locally stable and axially symmetric steady states at x(3) = +/-infinity. Here a is a director field with values in S-2 subset of R-3: vertical bar u vertical bar = 1. The traveling wave has a singular point on the cylinder axis. Letting R -> infinity we obtain a traveling wave defined in all space.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [21] Traveling Wave Solutions for Non-Newtonian Foam Flow in Porous Media
    da Silva Pereira, Weslley
    Chapiro, Grigori
    TRANSPORT IN POROUS MEDIA, 2023, 148 (02) : 247 - 265
  • [22] Three-dimensional traveling-wave solutions in plane Couette flow
    Nagata, M
    PHYSICAL REVIEW E, 1997, 55 (02): : 2023 - 2025
  • [23] The linear stability of traveling wave solutions for a reacting flow model with source term
    Hsiao, L
    Pan, RH
    QUARTERLY OF APPLIED MATHEMATICS, 2000, 58 (02) : 219 - 238
  • [24] Existence and asymptotic stability of traveling wave solutions of a model system for reacting flow
    Yong, WA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (11) : 1791 - 1809
  • [25] Traveling Wave Solutions for Non-Newtonian Foam Flow in Porous Media
    Weslley da Silva Pereira
    Grigori Chapiro
    Transport in Porous Media, 2023, 148 : 247 - 265
  • [26] TRAVELING WAVE SOLUTIONS FOR A CHEMOTAXIS SYSTEM
    Catrina, F.
    Reyes, V. M. G.
    BIOMAT 2013: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2014, : 43 - 62
  • [27] TRAVELING WAVE SOLUTIONS OF A COMPETITIVE RECURSION
    Lin, Guo
    Li, Wan-Tong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01): : 173 - 189
  • [28] BK equation and traveling wave solutions
    de Santana Amaral, J. T.
    Betemps, M. A.
    Ducati, M. B. Gay
    Soyez, G.
    BRAZILIAN JOURNAL OF PHYSICS, 2007, 37 (2B) : 648 - 651
  • [29] TRAVELING WAVE SOLUTIONS TO A GRADIENT SYSTEM
    REINECK, JF
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (02) : 535 - 544
  • [30] Global Solutions to the Heat Flow for m-harmonic Maps and Regularity
    Boegelein, Verena
    Duzaar, Frank
    Scheven, Christoph
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (06) : 2157 - 2210