Traveling wave solutions of harmonic heat flow

被引:6
|
作者
Bertsch, M.
Muratov, C. B.
Primi, I.
机构
[1] CNR, Ist Appl Calcolo Mauro Picone, I-00161 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[4] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
harmonic map; director field; traveling wave; singularity; calculus of variations; bistable potential;
D O I
10.1007/s00526-006-0016-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a traveling wave solution of the equation u(t) = Delta u + vertical bar del u vertical bar(2)u in an infinitely long cylinder of radius R, which connects two locally stable and axially symmetric steady states at x(3) = +/-infinity. Here a is a director field with values in S-2 subset of R-3: vertical bar u vertical bar = 1. The traveling wave has a singular point on the cylinder axis. Letting R -> infinity we obtain a traveling wave defined in all space.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条