Traveling wave solutions of harmonic heat flow

被引:6
|
作者
Bertsch, M.
Muratov, C. B.
Primi, I.
机构
[1] CNR, Ist Appl Calcolo Mauro Picone, I-00161 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[4] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
harmonic map; director field; traveling wave; singularity; calculus of variations; bistable potential;
D O I
10.1007/s00526-006-0016-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a traveling wave solution of the equation u(t) = Delta u + vertical bar del u vertical bar(2)u in an infinitely long cylinder of radius R, which connects two locally stable and axially symmetric steady states at x(3) = +/-infinity. Here a is a director field with values in S-2 subset of R-3: vertical bar u vertical bar = 1. The traveling wave has a singular point on the cylinder axis. Letting R -> infinity we obtain a traveling wave defined in all space.
引用
收藏
页码:489 / 509
页数:21
相关论文
共 50 条
  • [1] Traveling wave solutions of harmonic heat flow
    M. Bertsch
    C. B. Muratov
    I. Primi
    Calculus of Variations and Partial Differential Equations, 2006, 26 : 489 - 509
  • [2] Nonuniqueness of the traveling wave speed for harmonic heat flow
    Bertsch, M.
    Primi, I.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) : 69 - 103
  • [3] Traveling wave solutions of the heat flow of director fields
    Bertsch, M.
    Primi, I.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (02): : 227 - 250
  • [4] Exact Traveling Wave Solutions in Viscoelastic Channel Flow
    Page, Jacob
    Dubief, Yves
    Kerswell, Rich R.
    PHYSICAL REVIEW LETTERS, 2020, 125 (15)
  • [5] Streamwise localization of traveling wave solutions in channel flow
    Barnett, Joshua
    Gurevich, Daniel R.
    Grigoriev, Roman O.
    PHYSICAL REVIEW E, 2017, 95 (03)
  • [6] A TRAVELING WAVE HARMONIC GENERATOR
    HEDDERLY, DL
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1960, 48 (09): : 1658 - 1658
  • [7] Traveling wave solutions for the combustion model of a shear flow in a cylinder
    Kang, Ensil
    Kim, Eun Heui
    Lee, Jihoon
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (03) : 593 - 605
  • [9] TRAVELING WAVE SOLUTIONS OF A FREE BOUNDARY PROBLEM WITH LATENT HEAT EFFECT
    Chang, Chueh-Hsin
    Chen, Chiun-Chuan
    Huang, Chih-Chiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (04): : 1797 - 1809
  • [10] Traveling-wave solutions of the flow in a curved-square duct
    Yanase, Shinichiro
    Watanabe, Takeshi
    Hyakutake, Toru
    PHYSICS OF FLUIDS, 2008, 20 (12)