Non-paraxial idealized polarizer model

被引:3
|
作者
Zhang, Site [1 ,2 ]
Partanen, Henri [3 ]
Hellmann, Christian [2 ,4 ]
Wyrowski, Frank [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Appl Phys, Appl Computat Opt Grp, Albert Einstein Str 15, D-07743 Jena, Germany
[2] LightTrans Int UG, Kahlaische Str 4, D-07745 Jena, Germany
[3] Univ Eastern Finland, Yliopistokatu 2, FI-80100 Joensuu, Finland
[4] Wyrowski Photon UG, Kahlaische Str 4, D-07745 Jena, Germany
来源
OPTICS EXPRESS | 2018年 / 26卷 / 08期
关键词
JONES MATRIX-METHOD; ELECTROMAGNETIC-FIELDS; OPTICAL-SYSTEMS; PROPAGATION; FORMULATION; ALGORITHM; DIFFRACTION;
D O I
10.1364/OE.26.009840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An idealized polarizer model that works without the structural and material information is derived in the spatial frequency domain. The non-paraxial property is fully included and the result takes a simple analytical form, which provides a straight-forward explanation for the crosstalk between field components in non-paraxial cases. The polarizer model, in a 2 X 2-matrix form, can be conveniently used in cooperation with other computational optics methods. Two examples in correspondence with related works are presented to verify our polarizer model. (C) 2018 Optical Society of America
引用
收藏
页码:9840 / 9849
页数:10
相关论文
共 50 条
  • [21] Non-Paraxial Acceleration and Rotation in Curved Surfaces
    Bekenstein, Rivka
    Sharabi, Yonatan
    Nemirovsky, Jonathan
    Kaminer, Ido
    Carmon, Tal
    Segev, Mordechai
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [22] THE LUNEBURG APODIZATION PROBLEM IN THE NON-PARAXIAL DOMAIN
    STAMNES, JJ
    OPTICS COMMUNICATIONS, 1981, 38 (5-6) : 325 - 329
  • [23] Non-paraxial dispersive shock-waves
    Gentilini, Silvia
    Del Re, Eugenio
    Conti, Claudio
    OPTICS COMMUNICATIONS, 2015, 355 : 445 - 450
  • [24] Higher order solitons in non-paraxial optics
    Dakova, D.
    Slavchev, V.
    Dakova, A.
    Kovachev, L.
    Bozhikoliev, I.
    19TH INTERNATIONAL CONFERENCE AND SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2017, 10226
  • [25] On the longitudinal polarization of non-paraxial electromagnetic fields
    R. Martínez-Herrero
    P. M. Mejías
    A. Manjavacas
    Applied Physics B, 2010, 99 : 579 - 584
  • [26] Non-paraxial plasma equilibria in axisymmetric mirrors
    Arsenin, Vladimir V.
    Kuyanov, Alexey Yu.
    Fusion Technology, 2001, 39 (1 T): : 175 - 178
  • [27] Propagation properties of non-paraxial spatial solitons
    Chamorro-Posada, P.
    McDonald, G.S.
    New, G.H.C.
    Journal of Modern Optics, 2000, 47 (11 SPEC.) : 1877 - 1886
  • [28] Nonlinear generation of non-paraxial accelerating beam
    Zheng, Guoliang
    Xu, Shixiang
    Wu, Qingyang
    Cao, Jianmin
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [29] An Efficient Scalar, Non-Paraxial Beam Propagation Method
    Motes, R. Andrew
    Shakir, Sami A.
    Berdine, Richard W.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (01) : 4 - 8
  • [30] Helmholtz non-paraxial beam propagation method: An assessment
    Chamorro-Posada, Pedro
    McDonald, Graham S.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (04)