Higher order solitons in non-paraxial optics

被引:0
|
作者
Dakova, D. [1 ]
Slavchev, V. [2 ,3 ]
Dakova, A. [1 ,2 ]
Kovachev, L. [2 ]
Bozhikoliev, I. [1 ]
机构
[1] Univ Plovdiv Paisii Hilendarski, Fac Phys, 24 Tsar Asen Str, Plovdiv 4000, Bulgaria
[2] Bulgarian Acad Sci, Inst Elect, 72 Tzarigradsko Shossee, BU-1784 Sofia, Bulgaria
[3] Med Univ Plovdiv, Fac Pharm, Bul Vasil Aprilov 15-A, Plovdiv 4002, Bulgaria
关键词
Optical pulses with broad-band spectrum; nonlinear amplitude equation; nonlinear Schrodinger equation; soliton solution; higher order solitons; PULSE-COMPRESSION; FIBER; DISPERSION;
D O I
10.1117/12.2263451
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In last two decades actively are studied the phenomena resulting from the evolution of ultrashort optical pulses in nonlinear dispersive media. The well-known (1+1D) nonlinear Schrodinger equation (NSE) describes very well the propagation of narrow-band optical pulses (Delta omega<<omega(0)). Nowadays, it is quite easy to obtain broad-band phase-modulated femtosecond laser pulses or to reach the attosecond region where Delta omega approximate to omega(0). To explore their behavior it is necessary to use the more general nonlinear amplitude equation (NAE). In local time coordinate system it differs from the standard NSE with two additional non-paraxial terms. In present paper, by using the NAE, it is investigated the dynamics of higher order non-paraxial solitons. It is shown that the peak of soliton is linearly shifted in time domain. This temporal shift is observed in the frames of non-paraxial optics, even when the higher order nonlinear and dispersive effects are neglected.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Solitons in non-paraxial optics
    Dakova, D.
    Dakova, A.
    Slavchev, V.
    Kovachev, L.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2016, 18 (5-6): : 435 - 439
  • [2] Non-paraxial solitons
    Chamorro-Posada, P
    McDonald, GS
    New, GHC
    JOURNAL OF MODERN OPTICS, 1998, 45 (06) : 1111 - 1121
  • [3] Path integral for non-paraxial optics
    Braidotti, Maria Chiara
    Conti, Claudio
    Faizal, Mir
    Dey, Sanjib
    Alasfar, Lina
    Alsaleh, Salwa
    Ashour, Amani
    EPL, 2018, 124 (04)
  • [4] Propagation properties of non-paraxial spatial solitons
    Chamorro-Posada, P
    McDonald, GS
    New, GHC
    JOURNAL OF MODERN OPTICS, 2000, 47 (11) : 1877 - 1886
  • [5] Propagation properties of non-paraxial spatial solitons
    Chamorro-Posada, P.
    McDonald, G.S.
    New, G.H.C.
    Journal of Modern Optics, 2000, 47 (11 SPEC.) : 1877 - 1886
  • [6] Analysis of non-paraxial solitons using a collective variable approach
    Fewo, Serge I.
    Moussambi, Hermance
    Kofane, Timoleon C.
    PHYSICA SCRIPTA, 2011, 84 (03)
  • [7] Step-discontinuity approach for non-paraxial diffractive optics
    Vallius, T
    Kettunen, V
    Kuittinen, M
    Turunen, J
    JOURNAL OF MODERN OPTICS, 2001, 48 (07) : 1195 - 1210
  • [8] Paraxial and non-paraxial optical skyrmions
    Gotte, Jorg
    Ye, Zhujun
    McWilliams, Amy
    Cisowska, Claire
    Speirits, Iona
    Franke-Arnold, Sonja
    Barnett, Stephen M.
    EOS ANNUAL MEETING, EOSAM 2024, 2024, 309
  • [9] Application of non-paraxial optics in 3d medical treatment
    College of information, Nankai University, Tianjin
    300071, China
    不详
    300071, China
    Dig. Tech. Pap. SID Int. Symp., 2021, S1 (283-287): : 283 - 287
  • [10] Non-Paraxial Accelerating Beams
    Kaminer, Ido
    Bekenstein, Rivka
    Segev, Mordechai
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,