Higher order solitons in non-paraxial optics

被引:0
|
作者
Dakova, D. [1 ]
Slavchev, V. [2 ,3 ]
Dakova, A. [1 ,2 ]
Kovachev, L. [2 ]
Bozhikoliev, I. [1 ]
机构
[1] Univ Plovdiv Paisii Hilendarski, Fac Phys, 24 Tsar Asen Str, Plovdiv 4000, Bulgaria
[2] Bulgarian Acad Sci, Inst Elect, 72 Tzarigradsko Shossee, BU-1784 Sofia, Bulgaria
[3] Med Univ Plovdiv, Fac Pharm, Bul Vasil Aprilov 15-A, Plovdiv 4002, Bulgaria
关键词
Optical pulses with broad-band spectrum; nonlinear amplitude equation; nonlinear Schrodinger equation; soliton solution; higher order solitons; PULSE-COMPRESSION; FIBER; DISPERSION;
D O I
10.1117/12.2263451
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In last two decades actively are studied the phenomena resulting from the evolution of ultrashort optical pulses in nonlinear dispersive media. The well-known (1+1D) nonlinear Schrodinger equation (NSE) describes very well the propagation of narrow-band optical pulses (Delta omega<<omega(0)). Nowadays, it is quite easy to obtain broad-band phase-modulated femtosecond laser pulses or to reach the attosecond region where Delta omega approximate to omega(0). To explore their behavior it is necessary to use the more general nonlinear amplitude equation (NAE). In local time coordinate system it differs from the standard NSE with two additional non-paraxial terms. In present paper, by using the NAE, it is investigated the dynamics of higher order non-paraxial solitons. It is shown that the peak of soliton is linearly shifted in time domain. This temporal shift is observed in the frames of non-paraxial optics, even when the higher order nonlinear and dispersive effects are neglected.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Non-paraxial plasma equilibria in axisymmetric mirrors
    Arsenin, Vladimir V.
    Kuyanov, Alexey Yu.
    Fusion Technology, 2001, 39 (1 T): : 175 - 178
  • [32] Nonlinear generation of non-paraxial accelerating beam
    Zheng, Guoliang
    Xu, Shixiang
    Wu, Qingyang
    Cao, Jianmin
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [33] An Efficient Scalar, Non-Paraxial Beam Propagation Method
    Motes, R. Andrew
    Shakir, Sami A.
    Berdine, Richard W.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (01) : 4 - 8
  • [34] Helmholtz non-paraxial beam propagation method: An assessment
    Chamorro-Posada, Pedro
    McDonald, Graham S.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (04)
  • [35] Non-paraxial diffractive and refractive laser beam shaping
    Yang, Liangxin
    Knoth, Roberto
    Hellmann, Christian
    Wyrowski, Frank
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XX, 2018, 10518
  • [36] Wigner function and ambiguity function for non-paraxial wavefields
    Sheppard, CJR
    Larkin, KG
    OPTICAL PROCESSING AND COMPUTING: A TRIBUTE TO ADOLF LOHMANN, 2001, 4392 : 99 - 103
  • [37] Wave dislocation reactions in non-paraxial Gaussian beams
    Berry, MV
    JOURNAL OF MODERN OPTICS, 1998, 45 (09) : 1845 - 1858
  • [38] Propagation of non-paraxial nonsymmetrical vector Gaussian beam
    Zhou, GQ
    Chen, RP
    Chen, JL
    OPTICS COMMUNICATIONS, 2006, 259 (01) : 32 - 39
  • [39] Quantum operator for non-paraxial single photon interference
    Castaneda, Roman
    Hurtado, Camilo
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2024, 48 (189): : 768 - 783
  • [40] Energy, momentum and propagation of non-paraxial high-order Gaussian beams in the presence of an aperture
    Stilgoe, Alexander B.
    Nieminen, Timo A.
    Rubinsztein-Dunlop, Halina
    JOURNAL OF OPTICS, 2015, 17 (12)