Higher order solitons in non-paraxial optics

被引:0
|
作者
Dakova, D. [1 ]
Slavchev, V. [2 ,3 ]
Dakova, A. [1 ,2 ]
Kovachev, L. [2 ]
Bozhikoliev, I. [1 ]
机构
[1] Univ Plovdiv Paisii Hilendarski, Fac Phys, 24 Tsar Asen Str, Plovdiv 4000, Bulgaria
[2] Bulgarian Acad Sci, Inst Elect, 72 Tzarigradsko Shossee, BU-1784 Sofia, Bulgaria
[3] Med Univ Plovdiv, Fac Pharm, Bul Vasil Aprilov 15-A, Plovdiv 4002, Bulgaria
关键词
Optical pulses with broad-band spectrum; nonlinear amplitude equation; nonlinear Schrodinger equation; soliton solution; higher order solitons; PULSE-COMPRESSION; FIBER; DISPERSION;
D O I
10.1117/12.2263451
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In last two decades actively are studied the phenomena resulting from the evolution of ultrashort optical pulses in nonlinear dispersive media. The well-known (1+1D) nonlinear Schrodinger equation (NSE) describes very well the propagation of narrow-band optical pulses (Delta omega<<omega(0)). Nowadays, it is quite easy to obtain broad-band phase-modulated femtosecond laser pulses or to reach the attosecond region where Delta omega approximate to omega(0). To explore their behavior it is necessary to use the more general nonlinear amplitude equation (NAE). In local time coordinate system it differs from the standard NSE with two additional non-paraxial terms. In present paper, by using the NAE, it is investigated the dynamics of higher order non-paraxial solitons. It is shown that the peak of soliton is linearly shifted in time domain. This temporal shift is observed in the frames of non-paraxial optics, even when the higher order nonlinear and dispersive effects are neglected.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Split step non-paraxial beam propagation method
    Sharma, A
    Agrawal, A
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XII, 2004, 5349 : 132 - 142
  • [42] Non-Paraxial Diffraction Effect of High NA Objectives
    Lee, Jong Ung
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2014, 25 (01) : 8 - 13
  • [43] Evanescent field of vectorial highly non-paraxial beams
    Martinez-Herrero, R.
    Mejias, P. M.
    Carnicer, A.
    OPTICS EXPRESS, 2008, 16 (05): : 2845 - 2858
  • [44] Non-paraxial analytical solution for the generation of focal curves
    Jaroszewicz, Z
    Kolodziejczyk, A
    Sypek, M
    GomezReino, C
    JOURNAL OF MODERN OPTICS, 1996, 43 (03) : 617 - 637
  • [45] Fourier analysis of non-paraxial self-focusing
    de la Fuente, R
    Varela, O
    Michinel, H
    OPTICS COMMUNICATIONS, 2000, 173 (1-6) : 403 - 411
  • [46] Propagation of non-paraxial fields by parabasal field decomposition
    Asoubar, Daniel
    Zhang, Site
    Wyrowski, Frank
    Kuhn, Michael
    OPTICAL MODELLING AND DESIGN II, 2012, 8429
  • [47] The Analysis of Talbot Effect of a Grating at Non-paraxial Assumption
    Wang Huaisheng
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 769 - 771
  • [48] Propagation properties of a non-paraxial hollow Gaussian beam
    Zhou, Guoquan
    OPTICS AND LASER TECHNOLOGY, 2009, 41 (05): : 562 - 569
  • [49] PARAXIAL AND NON-PARAXIAL RAY SPEEDS IN STRONGLY RANGE-DEPENDENT SOFAR CHANNELS
    SHOCKLEY, RC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1978, 64 (04): : 1171 - 1177
  • [50] GAUSSIAN BEAM MODELING OF SAR ENHANCEMENT IN PARAXIAL AND NON-PARAXIAL REGIONS OF BIOLOGICAL TISSUES
    Lumori, M. L. D.
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2010, 11 : 1 - 12