Non-paraxial idealized polarizer model

被引:3
|
作者
Zhang, Site [1 ,2 ]
Partanen, Henri [3 ]
Hellmann, Christian [2 ,4 ]
Wyrowski, Frank [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Appl Phys, Appl Computat Opt Grp, Albert Einstein Str 15, D-07743 Jena, Germany
[2] LightTrans Int UG, Kahlaische Str 4, D-07745 Jena, Germany
[3] Univ Eastern Finland, Yliopistokatu 2, FI-80100 Joensuu, Finland
[4] Wyrowski Photon UG, Kahlaische Str 4, D-07745 Jena, Germany
来源
OPTICS EXPRESS | 2018年 / 26卷 / 08期
关键词
JONES MATRIX-METHOD; ELECTROMAGNETIC-FIELDS; OPTICAL-SYSTEMS; PROPAGATION; FORMULATION; ALGORITHM; DIFFRACTION;
D O I
10.1364/OE.26.009840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An idealized polarizer model that works without the structural and material information is derived in the spatial frequency domain. The non-paraxial property is fully included and the result takes a simple analytical form, which provides a straight-forward explanation for the crosstalk between field components in non-paraxial cases. The polarizer model, in a 2 X 2-matrix form, can be conveniently used in cooperation with other computational optics methods. Two examples in correspondence with related works are presented to verify our polarizer model. (C) 2018 Optical Society of America
引用
收藏
页码:9840 / 9849
页数:10
相关论文
共 50 条
  • [31] Non-paraxial diffractive and refractive laser beam shaping
    Yang, Liangxin
    Knoth, Roberto
    Hellmann, Christian
    Wyrowski, Frank
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XX, 2018, 10518
  • [32] Structure of the transverse profile of Gaussian-model non-paraxial electromagnetic beams
    Martínez-Herrero, R
    Mejías, PM
    Bosch, S
    Carnicer, A
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (06): : 524 - 530
  • [33] Wigner function and ambiguity function for non-paraxial wavefields
    Sheppard, CJR
    Larkin, KG
    OPTICAL PROCESSING AND COMPUTING: A TRIBUTE TO ADOLF LOHMANN, 2001, 4392 : 99 - 103
  • [34] Wave dislocation reactions in non-paraxial Gaussian beams
    Berry, MV
    JOURNAL OF MODERN OPTICS, 1998, 45 (09) : 1845 - 1858
  • [35] Propagation of non-paraxial nonsymmetrical vector Gaussian beam
    Zhou, GQ
    Chen, RP
    Chen, JL
    OPTICS COMMUNICATIONS, 2006, 259 (01) : 32 - 39
  • [36] Quantum operator for non-paraxial single photon interference
    Castaneda, Roman
    Hurtado, Camilo
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2024, 48 (189): : 768 - 783
  • [37] A non-paraxial model for the audio sound behind a non-baffled parametric array loudspeaker
    Zhong, Jiaxin
    Kirby, Ray
    Qiu, Xiaojun
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 147 (03): : 1577 - 1580
  • [38] Split step non-paraxial beam propagation method
    Sharma, A
    Agrawal, A
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XII, 2004, 5349 : 132 - 142
  • [39] Non-Paraxial Diffraction Effect of High NA Objectives
    Lee, Jong Ung
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2014, 25 (01) : 8 - 13
  • [40] Evanescent field of vectorial highly non-paraxial beams
    Martinez-Herrero, R.
    Mejias, P. M.
    Carnicer, A.
    OPTICS EXPRESS, 2008, 16 (05): : 2845 - 2858