AN RKHS APPROACH TO ROBUST FUNCTIONAL LINEAR REGRESSION

被引:30
|
作者
Shin, Hyejin [1 ]
Lee, Seokho [2 ]
机构
[1] Samsung Software R&D Ctr, Frontier CS Lab, Suwon 443732, South Korea
[2] Hankuk Univ Foreign Studies, Dept Stat, Yongin 130791, South Korea
基金
新加坡国家研究基金会;
关键词
M-type smoothing splines; outlier-resistant loss function; reproducing kernel Hilbert space; robust functional linear regression; SMOOTHING SPLINES; ESTIMATORS; CONVERGENCE; PREDICTION; RATES;
D O I
10.5705/ss.2014.0063
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the theoretical properties of robust estimators for the regression coefficient function in functional linear regression. A robust procedure is provided in which we use outlier-resistant loss functions including non-convex loss functions. Their robust estimates are computed using an iteratively reweighted penalized least-squares algorithm. Using a pseudo data approach, we are able to show that our robust estimators also achieve the same convergence rate for prediction and estimation as the penalized least squares estimator does in the classical functional linear regression. Theoretical developments are demonstrated using numerical studies with various types of robust loss, illustrating the merit of the method.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 50 条
  • [1] AN RKHS APPROACH FOR PIVOTAL INFERENCE IN FUNCTIONAL LINEAR REGRESSION
    Dette, Holger
    Tang, Jiajun
    STATISTICA SINICA, 2024, 34 (03) : 1521 - 1543
  • [2] An RKHS model for variable selection in functional linear regression
    Berrendero, Jose R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 25 - 45
  • [3] ROBUST REGRESSION IN RKHS - AN OVERVIEW
    Papageorgiou, George
    Bouboulis, Pantelis
    Theodoridis, Sergios
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2874 - 2878
  • [4] Robust Functional Linear Regression Models
    Beyaztas, Ufuk
    Shang, Han Lin
    R JOURNAL, 2023, 15 (01): : 212 - 233
  • [5] Robust penalized estimators for functional linear regression
    Kalogridis, Ioannis
    Van Aelst, Stefan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [6] Robust functional linear regression based on splines
    Maronna, Ricardo A.
    Yohai, Victor J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 65 : 46 - 55
  • [7] On the convergence of gradient descent for robust functional linear regression
    Wang, Cheng
    Fan, Jun
    JOURNAL OF COMPLEXITY, 2024, 84
  • [8] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    YU Ping
    ZHU Zhongyi
    SHI Jianhong
    AI Xikai
    Journal of Systems Science & Complexity, 2020, 33 (02) : 527 - 544
  • [9] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    Ping Yu
    Zhongyi Zhu
    Jianhong Shi
    Xikai Ai
    Journal of Systems Science and Complexity, 2020, 33 : 527 - 544
  • [10] Robust Linear Regression Analysis-A Greedy Approach
    Papageorgiou, George
    Bouboulis, Pantelis
    Theodoridis, Sergios
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (15) : 3872 - 3887